C.-B. Ma, M.-Q. Hu, H. Chen, C.-N. Chen, Q.-T. Liu
FULL PAPER
Kaneko, Chem. Rev. 2001, 101, 21–35; h) J. Yano, K. Sauer,
J. J. Girerd, V. K. Yachandra, J. Am. Chem. Soc. 2004, 126,
7486–7495; i) K. Sauer, J. Yano, V. K. Yachandra, Coord.
Chem. Rev. 2008, 252, 318–335; j) C. S. Mullins, V. L. Pecoraro,
Coord. Chem. Rev. 2008, 252, 416–443; k) G. C. Dismukes, R.
Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L.
Spiccia, G. F. Swiegers, Acc. Chem. Res. 2009, 42, 1935–1943;
l) A. R. Jaszewski, R. Stranger, R. J. Pace, J. Phys. Chem. B
2011, 115, 4484–4499.
a) A. M. Ako, I. J. Hewitt, V. Mereacre, R. Clerac, W.
Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. 2006,
118, 5048; Angew. Chem. Int. Ed. 2006, 45, 4926–4929; b) A. J.
Tasiopoulos, S. P. Perlepes, Dalton Trans. 2008, 5537–5555; c)
C.-H. Ge, Z.-H. Ni, C.-M. Liu, A.-L. Cui, D.-Q. Zhang, H.-Z.
Kou, Inorg. Chem. Commun. 2008, 11, 675–677; d) E. E. Mou-
shi, T. C. Stamatatos, W. Wernsdorfer, V. Nastopoulos, G.
Christou, A. J. Tasiopoulos, Inorg. Chem. 2009, 48, 5049–5051.
a) R. Sessoli, H.-L. Ysai, A. R. Schake, S. Wang, J. B. Vincent,
K. Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J.
Am. Chem. Soc. 1993, 115, 1804–1816; b) R. Sessoli, D. Gattes-
chi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143; c)
M. Soler, S. K. Chandra, E. R. Davidson, G. Christou, D.
Ruiz, D. N. Hendrickson, Chem. Commun. 2000, 2417–2418;
d) W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, G.
Christou, Nature 2002, 416, 406–409; e) D. J. Price, S. R. Bat-
ten, B. Moubaraki, K. S. Murray, Chem. Commun. 2002, 762–
763; f) W. Wernsdorfer, M. Soler, G. Christou, D. N. Hendrick-
son, J. Appl. Phys. 2002, 91, 7164–7166; g) M. Soler, W.
Wernsdorfer, K. A. Abboud, J. C. Huffman, E. R. Davidson,
D. N. Hendrickson, G. Christou, J. Am. Chem. Soc. 2003, 125,
3576–3588; h) G. Christou, Polyhedron 2005, 24, 2065–2075.
a) D. Loss, D. P. Divincenzo, G. Grinstein, D. D. Awschalom,
J. F. Smyth, Physica. B 1993, 189, 189–203; b) S. M. J. Aubin,
M. W. Wemple, D. M. Adams, H. L. Tsai, G. Christou, D. N.
Hendrickson, J. Am. Chem. Soc. 1996, 118, 7746–7754; c) L.
Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Bar-
bara, Nature 1996, 383, 145–147; d) C. Dendrinou-Samara, M.
Alexiou, C. M. Zaleski, J. W. Kampf, M. L. Kirk, D. P. Kessis-
soglou, V. L. Pecoraro, Angew. Chem. 2003, 115, 3893; Angew.
Chem. Int. Ed. 2003, 42, 3763–3766; e) C. J. Milios, C. P. Rap-
topoulou, A. Terzis, F. Lloret, R. Vicente, S. P. Perlepes, A.
Escuer, Angew. Chem. 2004, 116, 212; Angew. Chem. Int. Ed.
2004, 43, 210–212; f) H. Miyasaka, R. Clerac, W. Wernsdorfer,
L. Lecren, C. Bonhomme, K. Sugiura, M. Yamashita, Angew.
Chem. 2004, 116, 2861; Angew. Chem. Int. Ed. 2004, 43, 2801–
2805; g) A. K. Boudalis, B. Donnadieu, V. Nastopoulos, J. M.
Clemente-Juan, A. Mari, Y. Sanakis, J. P. Tuchagues, S. P. Per-
lepes, Angew. Chem. 2004, 116, 2316; Angew. Chem. Int. Ed.
2004, 43, 2266–2270; h) H. Oshio, N. Hoshino, T. Ito, M. Nak-
ano, J. Am. Chem. Soc. 2004, 126, 8805–8812; i) A. Cornia,
A. F. Costantino, L. Zobbi, A. Caneschi, D. Gatteschi, M.
Mannini, R. Sessoli, Structure and Bonding 2006, 122, 133–161;
j) C.-B. Ma, M.-Q. Hu, H. Chen, C.-N. Chen, Q.-T. Liu, Eur.
J. Inorg. Chem. 2008, 5274–5280.
with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å).
The data reduction and cell refinement were performed with the
CrystalClear program,[25] and the absorption correction was ap-
plied by using the SADABS program.[26] The structure was solved
by direct methods and subsequent difference Fourier syntheses and
was refined on F2 by full-matrix least-squares methods with the
SHELXTL-97 program package.[27] All of the non-hydrogen atoms
were refined anisotropically. The aromatic/alkyl hydrogen atoms
were introduced in the calculated positions and were treated as ri-
ding atoms, while the hydrogen atoms that were bonded on the
water molecules in complexes 1 and 2 were located from the differ-
ence Fourier syntheses. The water O atoms (O11, O12, and O13)
in 1 displayed some disorder, so no effort was made to add H atoms
to them. One of the water molecules of crystallization in 3 was
disordered and could not be modelled properly, thus the
SQUEEZE instruction of the program PLATON was carried out
in order to remove its contribution to the overall intensity data.[28]
The crystallographic data for 1–4 are outlined in Table 5.
[4]
[5]
CCDC-833032 (for 1), -833033 (for 2), -833034 (for 3), and -833035
(for 4) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): The bond valence sum calculations for the Mn atoms in 1–4,
two packing diagrams for 1 and 4, two tables containing the hydro-
gen bonds for 1 and 2, and five tables containing the selected bond
angles and/or bond lengths for 1–4 are contained in the Supporting
Information.
[6]
Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (NSFC) (grant numbers 20973172 and 21071145).
[1] a) T. Lis, Acta Crystallogr., Sect. B 1980, 36, 2042–2046; b) J.
Villain, F. Hartman-Boutron, R. Sessoli, A. Rettori, Europhys.
Lett. 1994, 27, 159–164; c) P. Politi, A. Rettori, F. Hartmann-
Boutron, J. Villain, Phys. Rev. Lett. 1995, 75, 537–540; d) M.
Hennion, L. Pardi, I. Mirebeau, E. Suard, R. Sessoli, A. Cane-
schi, Phys. Rev. B 1997, 56, 8819–8827; e) A. Caneschi, D. Gat-
teschi, R. Sessoli, J. Chem. Soc., Dalton Trans. 1997, 3963–
3970; f) S. Das, S. Mukhopadhyay, Eur. J. Inorg. Chem. 2007,
4500–4507; g) V. L. Pecoraro, W. Y. Hsieh, Inorg. Chem. 2008,
47, 1765–1778.
[2] a) R. Manchanda, G. W. Brudvig, R. H. Crabtree, Coord.
Chem. Rev. 1995, 144, 1–38; b) V. K. Yachandra, K. Sauer,
M. P. Klein, Chem. Rev. 1996, 96, 2927–2950; c) W. Ruttinger,
G. C. Dismukes, Chem. Rev. 1997, 97, 1–24; d) S. Mukho-
padhyay, S. K. Mandal, S. Bhaduri, W. H. Armstrong, Chem.
Rev. 2004, 104, 3981–4026; e) J. Messinger, J. Yano, J. Kern, K.
Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Sa-
enger, A. Zouni, V. K. Yachandra, Science 2006, 314, 821–825;
f) Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature
2011, 473, 55–60.
[3] a) G. Christou, Acc. Chem. Res. 1989, 22, 328–335; b) R. J.
Debus, Biochem. Biophys. Acta 1992, 1102, 269–352; c) V. K.
Yachandra, V. J. Derose, M. J. Latimer, I. Mukerji, K. Sauer,
M. P. Klein, Science 1993, 260, 675–679; d) K. Wieghardt, An-
gew. Chem. 1994, 106, 765; Angew. Chem. Int. Ed. Engl. 1994,
33, 725–729; e) V. L. Pecoraro, M. J. Baldwin, A. Gelasco,
Chem. Rev. 1994, 94, 807–826; f) O. Horner, M. F. Charlot, A.
Boussac, E. Anxolabehere-Mallart, L. Tchertanov, J. Guilhem,
J. J. Girerd, Eur. J. Inorg. Chem. 1998, 721–727; g) M. Yagi, M.
[7]
a) S. Menege, M. N. Collomb-Dunand-Sauthier, C. Lambeaux,
M. Fontecave, J. Chem. Soc., Chem. Commun. 1994, 1885–
1886; b) H. Cao, S. L. Suib, J. Am. Chem. Soc. 1994, 116, 5334–
5342; c) A. Trovarelli, Catal. Rev. Sci. Eng. 1996, 38, 439–509;
d) D. Duprez, F. Delanoë, J. Barbier Jr, P. Isnard, G. Blanch-
ard, Catal. Today 1996, 29, 317–322; e) Z. Y. Ding, L. Li, D.
Wade, E. F. Gloyna, Ind. Eng. Chem. Res. 1998, 37, 1707–1716;
f) S. Aki, M. A. Abraham, Ind. Eng. Chem. Res. 1999, 38, 358–
367; g) Q. Feng, H. Kanoh, K. Ooi, J. Mater. Chem. 1999, 9,
319–333; h) S. Hamoudi, K. Belkacemi, A. Sayari, F. Larachi,
Chem. Eng. Sci. 2001, 56, 1275–1281; i) C.-M. Hung, J.-C. Lou,
C.-H. Lin, Environ. Eng. Sci. 2003, 20, 547–556; j) M.
Abecassis-Wolfovich, M. V. Landau, A. Brenner, M. Herskow-
itz, Ind. Eng. Chem. Res. 2004, 43, 5089–5097; k) F. Arena, J.
Negro, A. Parmaliana, L. Spadaro, G. Trunfio, Ind. Eng. Chem.
Res. 2007, 46, 6724–6731; l) R. Levi, M. Milman, M. V. Lan-
5052
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 5043–5053