Page 5 of 7
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
DOI: 10.1039/C9OB02717C
Conclusions
Notes and references
In summary, we report the synthesis of thiophene C-nucleoside
analogues having sugar residue (mono- and disaccharides) and
aromatic residue by symmetric dimerization of terminal sugar alkyne
or unsymmetric dimerization of terminal sugar alkyne and iodode
followed by sulfur heterocyclization in one pot. Homocoupling of
terminal sugar alkyne and subsequent sulfur heterocyclization
produce thiophene C-nucleoside analogues with disaccharides.
Unsymmetric dimerization of terminal sugar alkyne and iodide
followed by sulfur heterocyclization gives thiophene C-nucleoside
analogues with monosaccharides. The synthetic approach was
concise, simple, and general. The structurally diversified substrates
which include pyranosides, furanosides, and acyclic sugars have
been examined. 32 examples have been given and the corresponding
products are given in moderate to excellent yields.
1
Selected reviews: (a) D. Lee, M. He, Curr. Top. Med. Chem.,
2005, 5, 1333–1350; (b) T. Bililign, B. R. Griffith, J. S. Thorson,
Nat. Prod. Rep., 2005, 22, 742–760; (c) É. Bokor, S. Kun, D.
Goyard, M. Tóth, J.-P. Praly, S. Vidal, L. Somsák, Chem. Rev.,
2017, 117, 1687-1764.
(a) U. Hacksell, G. D. Daves, Progress in Medicinal Chemistry,
Elsevier, Amsterdam, 1985, Vol. 22, 1–65; (b) J. G. Buchanan,
Progress in the Chemistry of Organic Natural Products,
Springer, New York, 1985, 44, 243-285.
Selected examples: (a) T. Hosoya, E. Takashiro, T. Matsumoto,
K. Suzuki, J. Am. Chem. Soc., 1994, 116, 1004–1015; (b) K. A.
Parker, Y. Koh, J. Am. Chem. Soc., 1994, 116, 11149–11150; (c)
X. Cai, K. Ng, H. Panesar, S.-J. Moon, M. Paredes, K. Ishida, C.
Hertweck, T. G. Minehan, Org. Lett., 2014, 16, 2962–2965.
(a) S. A. Jabbour, B. J. Goldstein, Int. J. Clin. Pract., 2008, 62,
1279–1284; (b) Y. Fujita, N. J. Inagaki, Diabetes Invest., 2014,
5, 265–275; (c) Y. Zhang, Z.-P. Liu, Curr. Med. Chem., 2016,
23, 832–849; (d) N. C. Goodwin, Z.-M. Ding, B. A. Harrison, A.
L. Harris, M. Smith, A. Y. Thompson, W. Xiong, F. Mseeh, D. J.
Bruce, D. Diaz, S. Gopinathan, L. Li, E. O. O’Neill, M. Thiel, A.
G. E. Wilson, K. G. Carson, D. R. Powell, D. B. Rawlins, J.
Med. Chem., 2017, 60, 710–721.
L. Cappellacci, P. Franchetti, M. Grifantini, L. Messini, G. A.
Sheikha, G. Nocentini, R. Moraca, B. M. Goldstein, Nucleosides
and Nucleotides, 1995, 14, 637-640.
P. Franchetti, L. Cappellacci, M. Grifantini, A. Barzi, G.
Nocentini, H. Yang, A. O’Connor, H. N. Jayaram, C. Carrell, B.
M. Goldstein, J. Med. Chem., 1995, 38, 3829-3837.
P. Franchetti, L. Cappellacci, P. Perlini, H. N. Jayaram, A.
Butler, B. P. Schneider, F. R. Collart, E. Huberman, M.
Grifantini, J. Med. Chem., 1998, 41, 1702-1707.
S. Sakamaki, E. Kawanishi, Y. Koga, Y. Yamamoto, C.
Kuriyama, Y. Matsushita, K. Ueta, S. Nomura, Chem. Pharm.
Bull., 2013, 61, 1037–1043.
2
3
4
Experimental Section
General
Commercially available reagents were used without purification.
Commercially available solvents were dried by standard procedures
prior to use. Nuclear magnetic resonance spectra were recorded on a
400 MHz spectrometer, and the chemical shifts are reported in δ
units, parts per million (ppm), relative to residual chloroform (7.28
ppm) in the deuterated solvent. The following abbreviations were
used to describe peak splitting patterns when appropriate: s = singlet,
d = doublet, t = triplet, dd = doublet of doublets, and m = multiplet.
Coupling constants, J, are reported in hertz (Hz). The 13C NMR
spectra are reported in ppm relative to CDCl3 (77.0 ppm).
5
6
7
8
9
General procedure for the synthesis of 5aa-5ib:
A mixture of sugar alkyne (0.60 mmol), or sugar alkyne (0.60 mmol)
and iodoethynylbenzene (0.72 mmol), PdCl2(PPh3)2 (0.012 mmol),
CuI (0.012 mmol), Et3N (0.5 mL) and DMF (1.5 mL) was stirred
under air atmosphere at rt until TLC indicated the disappearance of
sugar alkyne. The mixture was filtered by diatomaceous earth.
Na2S·9H2O (1.5 mmol) and KOH (0.18 mmol) was added to the
mother liquid, and the solution was heated at 60 0C until TLC
showed the completion of the reaction. Then it was evaporated to
dryness and the residue was dissolved in EtOAc (25 mL), washed
with water (2×5 mL) and brine (5 mL), dried over Na2SO4 and
evaporated to dryness. The residue was purified by column
chromatography to give the desired products.
(a) M. Yokoyama, A. Toyoshima, T. Akiba, H. Togo, Chem.
Lett., 1994, 265-268; (b) M. Yokoyama, H. Toyoshima, M.
Shimizu, H. Togo, J. Chem. Soc., Perkin Trans. 1, 1997, 29-33.
10 G. V. M. Sharma, K. R. Kumar, P. Sreenivas, P. R. Krishna, M.
S. Chorghade, Tetrahedron: Asymmetry, 2002, 13, 687–690.
11 M. Yokoyama, T. Tanabe, A. Toyoshima, H. Togo, Synthesis,
1993, 3, 517-520.
12 S. Lemaire, I. N. Houpis, T. Xiao, J. Li, E. Digard, C. Gozlan, R.
Liu, A. Gavryushin, C. Diéne, Y. Wang, V. Farina, P. Knochel,
Org. Lett., 2012, 14, 1480-1483.
Conflicts of interest
13 S. Wagschal, J. Guilbaud, P. Rabet, V. Farina, S. Lemaire, J.
Org. Chem., 2015, 80, 9328–9335.
There are no conflicts to declare.
14 S. Barroso, S. Lemaire, V. Farina, A. K. Steib, R. Blanc, P.
Knochel, J. Org. Chem., 2016, 81, 2804−2816
Acknowledgements
15 S. H. Lee, K.-S. Song, J. Y. Kim, M. Kang, J. S. Lee, S.-H. Cho,
H.-J. Park, J. Kim, J. Lee, Bioorg. Med. Chem., 2011, 19, 5813–
5832.
16 M. Imamura, K. Nakanish, T. Suzuki, K. Ikegai, R. Shiraki, T.
Ogiyama, T. Murakami, E. Kurosaki, A. Noda, Y. Kobayashi,
M. Yokota, T. Koide, K. Kosakai, Y. Ohkura, M. Takeuchi, H.
We gratefully acknowledge the National Natural Science Foundation
of China (No. 21772180, 21272219) for financial support.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins