Table 1. Au(I)-Catalyzed Tandem Reaction with Intramolecu-
lar Allylationa
Scheme 1. Intramolecular Trapping of Oxonium Intermediates
in Au(I)-Catalyzed Tandem Reaction Sequence
To examine the behavior of the carbocationic inter-
mediates toward trapping with an allylsilane moiety,
2-methylhex-1-en-5-yn-3-yloxy allyldimethylsilyl ether
2a was prepared via propargylation of methacrolein
(propargyl bromide, Zn, aq NH4ClꢀDMF)5 followed
by silylation. With cationic gold complex 1 (1 mol %),6 re-
action of 2a in the presence of tert-butanol (1.1 equiv) in
dichloromethane provided cyclopentene derivative 3a in
86% yield (entry 1 in Table 1). The corresponding cyclo-
hexene derivative was not observed, but a nonnegligible
amount of cyclopentene caboxaldehyde (III) was isolated.
However, it was found that the combined use of allyldi-
phenylsilyl ether7 and phenol as opposed to allyldimethyl-
silyl ether and tert-butanol could minimize the formation
of the cyclopentene carboxaldehyde byproduct.8 Under
the optimized conditions, various enyne substrates 2bꢀf
afforded homoallylic silxoane 3bꢀf in good yields. Com-
pound 3cꢀe derived from internal alkynes 2cꢀe provided
mixtures of diastereomers (entries 3ꢀ5), but products
3b and 3f derived from terminal alkyne are single diastereo-
mers because the quaternary carbon center is not stereo-
genic (entries 2). Similarly, relatively complex substrate 4
containing an aromatic moiety with oxygen substituents
afforded 5 in good yield (76%) without complication.9
Although the gold-catalyzed tandem ring closure of
enynes followed by intramolecular allylation was an effi-
cient process, the preparation of a substrate containing
a 1 (1 mol %), PhOH (1.1 equiv). b Isolated yield. c tert-Butanol
(1.1 equiv) was used instead of phenol.
the allyldiphenylsilyl moiety was found to be tedious. To
remove this inconvenience, we envisaged an intermolecu-
lar trapping of the oxonium intermediate with externally
added allyltrimethylsilane. Initially, triethylsilyl protected
2-methyl-1-hexen-5-yn-3-ol 6a was employed. But under
the typical reaction conditions with allyltrimethylsilane,
6a provided only 1-methylcyclopent-3-ene carbaldehyde
without any allylation (Scheme 2). To diminish the OꢀSi
bond cleavage by the attack of the additive alcohol
on the silicon center, a more sterically hindered silyl
(10) For related seminal publications on the Sakurai reaction, see:
(a) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 5, 941–942.
(b) Sakurai, H. Pure Appl. Chem. 1982, 54, 1. For in situ generated
oxoniums from alkoxysilanes and carbonyl compounds and their trap-
ping by allylic silanes, see: (c) Mukaiyama, T.; Ohshima, M.; Miyoshi,
ꢀ
N. Chem. Lett. 1987, 16, 1121. (d) Marko, I. E.; Mekhalfia, A.; Bayston,
D. J.; Adams, H. J. Org. Chem. 1992, 57, 2211. (e) Panek, J. S.; Yang, M.;
Xu, F. J. Org. Chem. 1992, 57, 5790. (f) Lipshutz, B. H.; Burgess-Henry,
J.; Roth, G. P. Tetrahedron Lett. 1993, 34, 995. (g) Tietze, L. F.; Wulff,
C.; Wegner, C.; Schuffenhauer, A.; Schiemann, K. J. Am. Chem. Soc.
1998, 120, 4276. (h) Cossrow, J.; Rychnovsky, S. D. Org. Lett. 2002, 4,
147. (i) Watahiki, T.; Akabane, Y.; Mori, S.; Oriyama, T. Org. Lett.
2003, 5, 3045. (j) Lowe, J. T.; Panek, J. S. Org. Lett. 2005, 7, 3231.
(k) Anzalone, P. W.; Baru, A. R.; Danielson, E. M.; Hayes, P. D.;
Nguyen, M. P.; Panico, A. F.; Smith, R. C.; Mohan, R. S. J. Org. Chem.
(5) Barbier, P. Compt. Rend. 1899, 128, 110.
ꢀ
ꢀ
ꢀ
(6) Nieto-Oberhuber, C.; Perez-Galan, P.; Herrero-Gomez, E.;
ꢁ
ꢀ
2005, 70, 2091. (l) Pospısil, J.; Kumamoto, T.; Marko, I. E. Angew.
Chem., Int. Ed. 2006, 45, 3357. (m) Spafford, M. J.; Anderson, E. D.;
Lacey, J. R.; Palma, A. C.; Mohan, R. S. Tetrahedron Lett. 2007, 48,
ꢀ
ꢀ
ꢀ
Lauterbach, T.; Rodrıguez, C.; Lopez, S.; Bour, C.; Rosellon, A.;Cardenas,
D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2008, 130, 269.
(7) (a) Ito, H.; Saito, T.; Miyahara, T.; Zhong, C.; Sawamurat, M.
Organometallics 2009, 28, 4829. (b) Ito, H.; Takagi, K.; Miyahara, T.;
Sawamura, M. Org. Lett. 2005, 7, 3001.
ꢀ ^
8665. (n) Kampen, D.; Ladepeche, A.; Claßen, G.; List, B. Adv. Synth.
Catal. 2008, 350, 962. (o) Kataki, D.; Phukan, P. Tetrahedron Lett. 2009,
50, 1958. For allenylsilane trappings, see: (p) Brawn, R. A.; Panek, J. S.
Org. Lett. 2007, 9, 2689. For in situ generated oxoniums from alcohol
and carbonyl compounds and their trapping by allylic silanes, see:
(q) Sakurai, H.; Sasaki, K.; Hayashi, J.; Hosomi, A. J. Org. Chem.
1984, 49, 2808. (r) Imwinkelried, R.; Seebach, D. Angew. Chem., Int. Ed.
(8) For the effect of additive alcohols, see: (a) Horino, Y.; Luzung,
M. R.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 11364. (b) Park, S.; Lee,
D. J. Am. Chem. Soc. 2006, 128, 10664.
(9) Compared to tert-butyldimethylsilyl phenyl ether 4, a related
methoxymethyl phenyl ether provided an acetal product due to a
neighboring oxygen atom participation with intermediate II.
€
Engl. 1985, 24, 765. (s) Tietze, L. F.; Dolle, A.; Schiemann, K. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1372.
Org. Lett., Vol. 14, No. 1, 2012
411