Journal of the American Chemical Society
Article
109, 3708. (c) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010,
110, 1746.
selective. Several possible structures can be envisioned, the
most likely of which would be a catalyst resulting from cleavage
of the Ru−C (adamantyl) bond. Thus far, we have been unable
to detect or isolate any species which may be responsible for
secondary metathesis. On the other hand, the existence of
ruthenium hydrides can be inferred by the observation of olefin
migration in the reaction of 12. Moreover, these species can
(3) (a) Leitgeb, A.; Wappel, J.; Slugovc, C. Polymer 2010, 51, 2927.
(b) Sutthasupa, S.; Shiotsuki, M.; Sanda, F. Polym. J. 2010, 42, 905.
(c) Liu, X.; Basu, A. J. Organomet. Chem. 2006, 691, 5148.
(4) Cossy, J.; Arseniyadis, S.; Meyer, C. Metathesis in Natural Product
Synthesis: Strategies, Substrates, and Catalysts, 1st ed.; Wiley-VCH:
Weinheim, Germany, 2010.
(5) Binder, J. B.; Raines, R. T. Curr. Opin. Chem. Biol. 2008, 12, 767.
(6) Schrodi, Y.; Ung, T.; Vargas, A.; Mkrtumyan, G.; Lee, C. W.;
Champagne, T. M.; Pederson, R. L.; Hong, S. H. CLEANSoil, Air,
Water 2008, 36, 669.
1
also be detected by H NMR spectroscopy under specific
conditions.28 We have attempted to suppress the generation of
hydride species with various chemical quenchers but have been
unable to achieve this thus far.29 Consequently, the design of
new catalysts that are less susceptible to either secondary
metathesis or hydride formation is of paramount importance.
For now, individual researchers must prioritize either
conversion or Z-selectivity with substrates that are more
susceptible to isomerization.
(7) (a) Wang, Y.; Jimenez, M.; Hansen, A. S.; Raiber, E.-A.;
Schreiber, S. L.; Young, D. W. J. Am. Chem. Soc. 2011, 133, 9196.
(b) Gallenkamp, D.; Furstner, A. J. Am. Chem. Soc. 2011, 133, 9232.
̈
(8) (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 16630. (b) Marinescu, S. C.; Schrock, R. R.;
Muller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30,
̈
In summary, we have prepared a variety of new C−H-
activated ruthenium catalysts for Z-selective olefin metathesis.
Adjusting the ligand environment around the metal center has
yielded significant insight into the initiation behavior, activity,
and selectivity of this class of catalysts and has facilitated the
development of improved catalysts (7−10) that are capable of
ca. 1000 turnovers in several cross-metathesis reactions. We
note that these catalysts can be used with very low loadings and
do not require reduced pressures, high temperatures, or
rigorous exclusion of protic solvents in order to operate
effectively. Secondary metathesis events are also relatively slow
for the majority of substrates, meaning that significant reaction
optimization should not be required. On the basis of these
attributes, we anticipate that catalysts such as 7 will be swiftly
adopted by both industrial and academic researchers interested
in the construction of Z-olefins using metathesis methodology.
1780. (c) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.;
Hoveyda, A. H. Nature 2011, 471, 461. (d) Marinescu, S. C.; Levine,
D. S.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2011,
133, 11512.
(9) (a) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.
(b) Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem.
Soc. 2011, 133, 9686.
(10) (a) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.;
Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 2546. (b) Leitao, E. M.; Dubberley, S. R.; Piers,
W. E.; Wu, Q.; McDonald, R. Chem.Eur. J. 2008, 14, 11565.
(c) Galan, B. R.; Pitak, M.; Gembicky, M.; Keister, J. B.; Diver, S. T. J.
Am. Chem. Soc. 2009, 131, 6822.
(11) (a) Romero, P. E.; Piers, W. E.; McDonald, R. Angew. Chem., Int.
Ed. 2004, 43, 6161. (b) Wenzel, A. G.; Grubbs, R. H. J. Am. Chem. Soc.
2006, 128, 16048. (c) Romero, P. E.; Piers, W. E. J. Am. Chem. Soc.
2007, 129, 1698. (d) Rowley, C. N.; van der Eide, E. F.; Piers, W. E.;
Woo, T. K. Organometallics 2008, 27, 6043. (e) van der Eide, E. F.;
Romero, P. E.; Piers, W. E. J. Am. Chem. Soc. 2008, 130, 4485.
(f) Leitao, E. M.; van der Eide, E. F.; Romero, P. E.; Piers, W. E.;
McDonald, R. J. Am. Chem. Soc. 2010, 132, 2784. (g) van der Eide, E.
F.; Piers, W. E. Nature Chem. 2010, 2, 571. (h) Keitz, B. K.; Grubbs, R.
H. J. Am. Chem. Soc. 2011, 133, 16277.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental and synthetic details as well as NMR spectra and
a CIF file. This material is available free of charge via the
(12) A more thorough analysis of decomposition structures related to
2 will be reported in a subsequent communication.
AUTHOR INFORMATION
■
(13) For instance, both Ar = 2,6-di-isopropylphenyl and 3,5-tert-
butylphenyl formed unstable complexes upon exposure of the
precursors to silver pivalate.
(14) (a) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc.
2001, 123, 6543. (b) Hejl, A. Ph.D. Dissertation, California Institute of
Technology, 2007. (c) Vorfalt, T.; Wannowius, K.-J.; Plenio, H. Agnew.
Chem., Int. Ed. 2010, 1, 5533. (d) Ashworth, I. W.; Hillier, I. H.;
Nelson, D. J.; Percy, J. M.; Vincent, M. A. Chem. Commun. 2011, 47,
5428.
(15) Time-course plots for substrates 12 and 18 can be found in the
Supporting Information.
(16) Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H.
Organometallics 2006, 25, 5740.
Corresponding Author
Author Contributions
‡These authors contributed equally.
ACKNOWLEDGMENTS
■
Lawrence Henling and Dr. Michael Day are acknowledged for
X-ray crystallographic analysis. Dr. David VanderVelde is
thanked for assistance with NMR experimentation and analysis.
This work was financially supported by the NIH (NIH
5R01GM031332-27), the NSF (CHE-1048404), Mitsui
Chemicals, Inc. (K.E.), and the NDSEG (fellowship to
B.K.K.). Instrumentation on which this work was carried out
were supported by the NSF (X-ray diffractometer, CHE-
0639094) and the NIH (NMR spectrometer, RR027690).
Materia, Inc. is thanked for its donation of metathesis catalysts.
(17) (a) Banasiak, D. S. J. Mol. Catal. 1985, 28, 107. (b) Pederson, R.
L.; Fellows, I. M.; Ung, T. A.; Ishihara, H.; Hajela, S. P. Adv. Synth.
Catal. 2002, 344, 728. (c) Mol, J. J. Mol. Catal. A: Chem. 2004, 213, 39.
(d) Mori, K. Tetrahedron 2009, 65, 2798. (e) Mori, K. Tetrahedron
2009, 65, 3900. (f) Mori, K.; Tashiro, T.; Zhao, B.; Suckling, D. M.;
El-Sayed, A. M. Tetrahedron 2010, 66, 2642.
(18) The stereochemistry of 28 was confirmed by 1H and 13C NMR
spectroscopy in conjunction with 2D techniques including COSY and
HSQC. Further confirmation was obtained using IR spectroscopy. See
the Supporting Information for details.
REFERENCES
■
(1) (a) Furstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (b) Trnka,
T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (c) Astruc, D. New
̈
J. Chem. 2005, 29, 42.
(19) Subbaraman, A. S.; Mithran, S.; Mamdapur, V. R. Molecules
1998, 3, 35.
(2) (a) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003,
42, 4592. (b) Samojłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009,
698
dx.doi.org/10.1021/ja210225e | J. Am. Chem.Soc. 2012, 134, 693−699