cases. In addition, a stoichiometric amount of base was
required in a few cases to obtain the N-alkylated products in
high yields.
broad substrate scope. Further studies to expand the application
of the synthetic strategy are currently underway.
We are grateful to National Natural Science Foundation
of China (No. 20902046) and Natural Science Foundation of
Jiangsu Province (No. BK2009384) for financial support of
this research. This project is also supported by the State Key
Laboratory of Fine Chemicals, Dalian University of Technol-
ogy (Grant No. KF0911).
To obtain the information about the reaction mechanism,
the condensation of an amino-azole with an aldehyde, and
hydrogen transfer between the resulting imine and alcohol were
undertaken. The reaction of 4,5-diphenylthiazol-2-amine with
benzaldehyde at 150 1C for 12 h gave (Z)-N-benzylidene-4,5-
diphenylthiazol-2-amine in 45% yield as only product [eqn (1)].
Further, the reaction of the resulting (Z)-N-benzylidene-4,5-
diphenylthiazol-2-amine with benzyl alcohol in the presence of
[Cp*IrCl2]2 (0.2 mol%) and NaOH (20 mol%) was carried out
for 12 h to afford almost stoichiometric amounts of N-benzyl-
4,5-diphenylthiazol-2-amine and benzaldehyde [eqn (2)].
Notes and references
1 (a) E. C. Dykhuizen, J. F. May, A. Tongpenyai and L. L. Kiessling,
J. Am. Chem. Soc., 2008, 130, 6706; (b) T. Zhang, Z. Yan,
A. Sromek, B. I. Knapp, T. Scrimale, J. M. Bidlack and
J. L. Neumeyer, J. Med. Chem., 2011, 54, 1903; (c) R. E. Martin,
L. G. Green, W. Guba, N. Kratochwil and A. Christ, J. Med.
Chem., 2007, 50, 6291.
2 (a) L. L. Joyce, G. Evindar and R. A. Batey, Chem. Commun., 2004,
446; (b) P. Saha, T. Ramana, N. Purkait, M. A. Ali, R. Paul and
T. Punniyamurthy, J. Org. Chem., 2009, 74, 8719; (c) Q. Ding,
X. He and J. Wu, J. Comb. Chem., 2009, 11, 587; (d) K. Inamoto,
C. Hasegawa, K. Hiroya and T. Doi, Org. Lett., 2008, 10, 5147;
(e) L. L. Joyce and R. A. Batey, Org. Lett., 2009, 11, 2792;
(f) D. Ma, X. Lu, L. Shi, H. Zhang, Y. Jiang and X. Liu,
Angew. Chem., Int. Ed., 2011, 50, 1118.
ð1Þ
3 (a) D. Monguchi, T. Fujiwara, H. Furukawa and A. Mori,
Org. Lett., 2009, 11, 1607; (b) J. Y. Kim, S. H. Cho, J. Joseph
and S. Chang, Angew. Chem., Int. Ed., 2010, 49, 9899; (c) S. Guo,
B. Qian, Y. Xie, C. Xia and H. Huang, Org. Lett., 2011, 13, 522;
(d) T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem.
Soc., 2010, 132, 69001; (e) S. H. Cho, J. Y. Kim, S. Y. Lee and
S. Chang, Angew. Chem., Int. Ed., 2009, 48, 9127; (f) For a selected
review, see: A. Armstrong and J. C. Collins, Angew. Chem., Int. Ed.,
2010, 49, 2282.
4 (a) J. V. Metzger, in Thiazoles and their Benzo Derivatives. Compre-
hensive Heterocyclic Chemistry, Pergamon Press Ltd, New York,
1984, vol. 6, pp. 235–331; (b) N. Zhang, M. Tomizawa and
J. E. Casida, J. Med. Chem., 2002, 45, 2832; (c) X. Zhu, Q. Yu,
R. G. Cutler, C. W. Culmsee, H. W. Holloway, D. K. Lahiri,
M. P. Mattson and N. H. Greig, J. Med. Chem., 2002, 45, 5090;
(d) H. Ramstrom, M. Bourotte, C. Philippe, M. Schmitt, J. Haiech
and J. J. Bourguignon, J. Med. Chem., 2004, 47, 2264;
(e) S. D. Barchechath, R. I. Tawatao, M. Corr, D. A. Carson and
H. B. Cottam, J. Med. Chem., 2005, 48, 6409.
5 For selected reviews and perspective, see: (a) M. H. S. A. Hamid,
P. A. Slatford and J. M. J. Williams, Adv. Synth. Catal., 2007,
349, 1555; (b) T. D. Nixon, M. K. Whittlesey and J. M. J. Williams,
Dalton Trans., 2009, 753; (c) G. E. Dobereiner and R. H. Grabtree,
Chem. Rev., 2010, 110, 681; (d) G. Guillena, D. Ramon and M. Yus,
Chem. Rev., 2010, 110, 1611; (e) A. J. A. Watson and J. M. J.
Williams, Science, 2010, 329, 635; (f) T. Suzuki, Chem. Rev., 2011,
111, 1825.
6 For selected examples, see: (a) K. Fujita, K. Yamamoto and
R. Yamaguchi, Org. Lett., 2002, 4, 2691; (b) K. Fujita, T. Fujii
and R. Yamaguchi, Org. Lett., 2004, 6, 3525; (c) M. H. S. A. Hamid
and J. M. J. Williams, Chem. Commun., 2007, 725; (d) H. S. A.
Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C. Maytum,
A. J. A. Watson and J. M. J. Williams, J. Am. Chem. Soc., 2009,
131, 1766; (e) F. Shi, M. K. Tse, S. Zhou, M. M. Pohl, J. Radnik,
S. Hubner, K. J. A. Bruckner and M. Beller, J. Am. Chem. Soc.,
2009, 131, 1775; (f) F. Shi, M. K. Tse, X. Cui, D. Gordes,
D. Michalik, K. Thurow, Y. Deng and M. Beller, Angew. Chem.,
Int. Ed., 2009, 48, 5912; (g) B. Blank, S. Michlik and R. Kempe,
Chem.–Eur. J., 2009, 15, 3790; (h) M. Zhu, K. Fujita and
R. Yamaguchi, Org. Lett., 2010, 12, 1336; (i) S. Bahn, S. Imm,
K. Mevius, L. Neubert, A. Tillack, J. M. J. Williams and M. Beller,
Chem.–Eur. J., 2010, 16, 3590; (j) S. Michlik and R. Kempe,
Chem.–Eur. J., 2010, 16, 13193.
ð2Þ
Based on these experimental results, a plausible mechanism
is proposed to account for the regioselective N-alkylation of
amino-azoles catalyzed by the iridium complex/base system
(Scheme 3). Accompanied by the catalytic cycle of iridium, the
alcohol is first dehydrogenated to form the aldehyde, followed
by the condensation of the resulting aldehyde with amino-azole
to afford an imine intermediate, which is hydrogenated to
afford the N-alkylated product. Obviously, the regioselectivity
of the reaction may be attributed to that the exocyclic nitrogen
is favored over the endocyclic one in the process of the con-
densation with aldehyde.
In summary, a simple, efficient and general method for the
preparation of 2-N-(alkylamino)azoles via direct N-alkylation
of amino-azoles with alcohols has been accomplished by
the [Cp*IrCl2]2/NaOH system. The procedure is apparently
attractive from a synthetic point of view because of high atom
efficiency, the formation of water as only side product, and
7 F. Li, H. Shan, Q. Kang and L. Chen, Chem. Commun., 2011,
47, 5058.
Scheme 3 Plausible mechanism for the direct N-alkylation reaction.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 603–605 605