3r: The Michael product was synthesized according to the
general procedure as a white solid in 87% overall yield. [a]2D3 +42.1
(c 1.0, CHCl3); H NMR (400 MHz, CDCl3): d 7.69 (2H, d, J =
Notes and references
1 (a) Special issue on organocatalysis, Acc. Chem. Res., 2004, 37(8); (b) A.
Berkessel and H. Groger. Asymmetric Organocatalysis, Wiley-VCH,
Weinheim, Germany, 2005; (c) Special issue on organocatalysis, Chem
Rev., 2007, 107(12); (d) P. I. Dalko, Enantioselective Organocatalysis,
Wiley-VCH, Weinheim, 2007; (e) Special feature issue on organocatal-
ysis, Proc. Natl. Acad. Sci., U. S. A., 2010, 107(48).
2 For reviews of hydrogen-bonding catalysis: (a) P. R. Schreiner and A.
Wittkopp, Org. Lett., 2002, 4, 217–220; (b) P. R. Schreiner, Chem.
Soc. Rev., 2003, 32, 289–296; (c) M. S. Taylor and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2006, 45, 1520–1543; (d) A. G. Doyle and E. N.
Jacobsen, Chem. Rev., 2007, 107, 5713–5743; (e) S. J. Connon, Chem.
Commun., 2008, 2499–2510.
3 For pioneering work on thiourea (or urea) organocatalysts, see: (a) M.
S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901–
4902; (b) D. E. Fuerst and E. N. Jacobsen, J. Am. Chem. Soc., 2005,
127, 8964–8965; (c) S. J. Zuend and E. N. Jacobsen, J. Am. Chem. Soc.,
2007, 129, 15872–15883; (d) I. T. Raheem, P. S. Thiara, E. A. Peterson
and E. N. Jacobsen, J. Am. Chem. Soc., 2007, 129, 13404–13405; (e)
Y.-Q. Fang and E. N. Jacobsen, J. Am. Chem. Soc., 2008, 130, 5660–
5661; (f) S. E. Reisman, A. G. Doyle and E. N. Jacobsen, J. Am. Chem.
Soc., 2008, 130, 7198–7199.
4 For reviews on asymmetric Michael addition, see: (a) D. Almasi, D.
A. Alonso and C. Najera, Tetrahedron: Asymmetry, 2007, 18, 299–365;
(b) S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 1701–1716; (c) S. Sulzer-
Mosse and A. Alexakis, Chem. Commun., 2007, 3123–3135; (d) J. L.
Vicario, D. Badia and L. Carrillo, Synthesis, 2007, 2065–2092; (e) K.
Tomioka and Y. Nagaoka in Comprehensive Asymmetric Catalysis, Vol.
3 (Ed.: E. N. Jacobsen, A. Pfaltz and H. Yamamoto), Springer, Berlin,
1999, chap. 31.1; (f) M. Sibi and S. Manyem, Tetrahedron, 2000, 56,
8033–8061; (g) M. Kanai and M. Shibasaki, in Catalytic Asymmetric
Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley, New York, 2000, p. 569; (h) N.
Krause and A. Hoffmann-Roder, Synthesis, 2001, 171–196.
5 For selected examples of bifunctional tertiary-amine thioureas cat-
alyzed Michael addition reactions: (a) T. Bui, S. Syed and C. F. Barbas
III, J. Am. Chem. Soc., 2009, 131, 8758–8759; (b) T. Okino, Y. Hoashi
and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672–12673; (c) T.
Okino, Y. Hoashi, T. Furukawa, X.-N. Xu and Y. Takemoto, J. Am.
Chem. Soc., 2005, 127, 119–125; (d) T. Inokuma, Y. Hoashi and Y.
Takemoto, J. Am. Chem. Soc., 2006, 128, 9413–9419; (e) T. Okino, S.
Nakamura, T. Furukawa and Y. Takemoto, Org. Lett., 2004, 6, 625–
627; (f) Y. Hoashi, T. Yabuta and Y. Takemoto, Tetrahedron Lett., 2004,
45, 9185–9188; (g) Y. Hoashi, T. Yabuta, P. Yuan, H. Miyabe and Y.
Takemoto, Tetrahedron, 2006, 62, 365–369; (h) X. Li, Z. Xi, S. Luo
and J.-P. Cheng, Adv. Synth. Catal., 2010, 352, 1097–1101; (i) X. Li, H.
Deng, B. Zhang, J. Li, L. Zhang, S. Luo and J.-P. Cheng, Chem.–Eur.
J., 2010, 16, 450–455; (j) X. Li, B. Zhang, Z. Xi, S. Luo and J.-P. Cheng,
Adv. Synth. Catal., 2010, 352, 416–424; (k) X. Li, Z. Xi, S. Luo and
J.-P. Cheng, Org. Biomol. Chem., 2010, 8, 77–82; (l) X. Li, S. S. Hu,
Z. G. Xi, L. Zhang, S. Luo and J.-P. Cheng, J. Org. Chem., 2010, 75,
8697–8700; (m) W.-M. Zhou, H. Liu and D.-M. Du, Org. Lett., 2008,
10, 2817–2820; (n) B. Vakulya, S. Varga, A. Csa´mpai and T. Soo´s, Org.
Lett., 2005, 7, 1967–1969; (o) T.-Y. Liu, J. Long, B.-J. Li, L. Jiang,
R. Li, Y. Wu, L.-S. Ding and Y.-C. Chen, Org. Biomol. Chem., 2006,
4, 2097–2099; (p) Y.-H. Liao, X.-L. Liu, Z.-J. Wu, L.-F. Cun, X.-M.
Zhang and W.-C. Yuan, Org. Lett., 2010, 12, 2896–2899; (q) X.-L. Liu,
Y.-H. Liao, Z.-J. Wu, L.-F. Cun, X. M. Zhang and W.-C. Yuan, J. Org.
Chem., 2010, 75, 4872–4875; (r) Q. Wei and L.-Z. Gong, Org. Lett.,
2010, 12, 1008–1011.
6 (a) M. L. G. Ramı’rez, A. Trejo, V. Navarro, R. Bye, E. Linares and
G. Delgado, J. Nat. Prod., 2001, 64, 432–435; (b) W. D. Inman, J.
Luo, S. D. Jolad, S. R. King and R. Cooper, J. Nat. Prod., 1999,
62, 1088–1092; (c) K. Baba, K. Takeuchi, M. Doi, M. Inoue and M.
Kozawa, Chem. Pharm. Bull., 1986, 34, 1540–1545; (d) K. Baba, K.
Takeuchi, M. Doi and M. Kozawa, Tennen Yuki Kagobutsu Toronkai
Koen Yoshishu, 1987, 29, 668–675; (e) S. Takai, M. Sakaguchi, D. Jin, K.
Baba and M. Miyazaki, Life Sci., 1999, 64, 1889–1896; (f) S. Sakuma,
Y. Fujimoto, M. Tsunomon, S. Tagano, H. Nishida, K. Baba and T.
Fujita, Prostaglandins, Leukotrienes Essent. Fatty Acids, 1998, 58, 143–
146; (g) B.-N. Su, Y. Takaishi, M. Tori, S. Takaoka, G. Honda, M. Itoh,
Y. Takeda, O. K. Kodzhimatov and O. Ashurmetov, Org. Lett., 2000, 2,
493–496; (h) W. Li, Y. Asada and T. Yoshikawa, Phytochemistry, 2000,
55, 447–456; (i) J. Wandji, S. S. Awanchiri, Z. T. Fomum, F. Tillequin
and S. M. Daniwicz, Phytochemistry, 1995, 38, 1309–1313; (j) H. M.
1
7.15 Hz), 7.53–7.44(5H, m), 7.29–7.23 (1H, m), 7.20–7.17 (2H, m),
6.93 (3H, t, J = 8.72 Hz), 4.98 (1H, t, J = 12.33 Hz), 4.88 (1H, d,
J = 11.81 Hz), 4.73 (1H, d, J = 12.50 Hz); 13C NMR (100.6 MHz,
CDCl3): d 174.5, 152.0, 133.9, 132.5, 130.6, 129.7, 129.3, 129.0,
128.9, 128.7, 127.3, 126.3, 112.9, 75.2, 59.5, 51.3 ppm; HRMS
(ESI+): calcd. for [C22H16ClNO4 + Na]+ 416.0660, found 416.0658.
The enantiomeric excess was determined by HPLC with an AD-H
column at 210 nm (2-propanol : hexane = 2 : 98), 1.0 mL min-1; tR =
16.5 min (minor), 17.4 min (major).
3s: The Michael product was synthesized according to the
general procedure as a white solid in 98% overall yield. [a]2D3 -11.7
1
(c 1.0, CHCl3); H NMR (400 MHz, CDCl3): d 7.65 (2H, d, J =
8.32 Hz), 7.56 (2H, d, J = 7.21 Hz), 7.49–7.42 (3H, m), 7.21
(1H, d, J = 7.21 Hz), 7.15 (2H, t, J = 7.21 Hz), 6.89–6.84 (3H,
m), 4.93 (1H, t, J = 12.20 Hz), 4.84 (1H, d, J = 12.20 Hz), 4.96
(1H, d, J = 12.20 Hz); 13C NMR (100.6 MHz, CDCl3): d 174.3,
152.5, 133.9, 133.5, 132.5, 129.7, 129.4, 129.1, 129.0, 128.9, 128.7,
127.9, 127.3, 116.9, 113.3, 75.2, 59.4, 51.3 ppm; HRMS (ESI+):
calcd. for [C22H16BrNO4 + Na]+ 460.0155, found 460.0157. The
enantiomeric excess was determined by HPLC with an OD-H
column at 210 nm (2-propanol : hexane = 2 : 98), 1.0 mL min-1;
tR = 21.2 min (major), 26.7 min (minor).
3t: The Michael product was synthesized according to the
general procedure as a white solid in 90% overall yield. [a]2D3 -24.7
1
(c 0.5, CHCl3); H NMR (400 MHz, CDCl3): d 7.67 (2H, d, J =
7.20 Hz), 7.47–7.37 (5H, m), 7.23 (1H, s), 7.15 (2H, s), 7.01 (1H, d,
J = 6.40 Hz), 6.86 (2H, d, J = 6.40 Hz), 4.98 (1H, t, J = 11.82 Hz),
4.79 (1H, d, J = 11.60 Hz), 4.70 (1H, d, J = 12.40 Hz); 13C NMR
(100.6 MHz, CDCl3): d 174.7, 153.7, 135.4, 133.2, 132.6, 130.7,
129.7, 128.9, 128.5, 126.1, 124.5, 111.9, 75.4, 58.7, 51.6 ppm;
HRMS (ESI+): calcd. for [C22H16ClNO4 + Na]+ 416.0660,
found 416.0656. The enantiomeric excess was determined by
HPLC with an AD-H column at 210 nm (2-propanol : hexane =
2 : 98), 1.0 mL min-1; tR = 31.2 min (major), 33.0 min
(minor).
Computation details
All calculations were performed at the B3LYP/6-311++G(d,p)//
B3LYP/6-31G(d) level by means of the Gaussian 03 suite of
program package.13 This level of theory was demonstrated to be
appropriate for studying the thiourea-based chiral bifunctional
organocatalyst promoted asymmetric addition reactions.10 All the
-1
˚
bond lengths are in angstroms (A), and energies in kcal mol .
Structures were generated using CYLview.14
Acknowledgements
This work was supported by National Natural Science Foun-
dation of China (Grant Nos. 20902091, 21172112, 21172118
and 21102101), the National Basic Research Program of China
(973 Program, No. 2010CB833300 and 2012CB821600), and the
State Key Laboratory on Elemento-organic Chemistry (Nankai
University, China). X. Li also thanks the Fundamental Research
Funds for the Central Universities for support.
This journal is
The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 413–420 | 419
©