10.1002/anie.202015895
Angewandte Chemie International Edition
COMMUNICATION
a drug molecule. To this end, we targeted the synthesis of 10
(Scheme 3c), which corresponds to an analog of a TRPV1
inhibitor drug candidate developed by Pfizer[16] in which the
Acknowledgements
This work was supported by the U.S. National Institute of Health
grant GM098628. The authors are grateful to Dr. William
Brennessel for assistance with crystallographic analyses. MS and
X-ray instrumentation are supported by U.S. National Science
Foundation grants CHE-0946653 and CHE-1725028. This work
was partially supported by Normandie Université (NU), the
Région Normandie, the Centre National de la Recherche
Scientifique (CNRS), Université de Rouen Normandie (URN),
INSA Rouen Normandie, Labex SynOrg (ANR-11-LABX-0029)
Innovation Chimie Carnot (I2C) and CNRS through the
International Emerging Action program. J.D. thanks the Labex
SynOrg (ANR-11-LABX-0029).
methyl group is replaced by
a
CHF2 group. Using
Mb(H64G,V68A) as the catalyst, α-difluoromethyl-substituted
olefin 8 could be successfully cyclopropanated in a semi-
preparative scale reaction to afford 9 (50 mg, 36%) with high
stereoselectivity (99% de, 98% ee). This key intermediate can be
then converted into the final product 10 in only two steps using
established routes.[10c, 16]
a
CH2F
FH2C
EDA, Mb(H64V,V68A)
Na2S2O4, KPi (pH 7)
CO2Et
5
4
>99% yield, 500 TON,
99% de, 98% ee
b
References
CF3
F3C
EDA, Mb(H64V,V68A)
Na2S2O4, KPi (pH 7)
CO2Et
[1] a) T. T. Talele, J. Med. Chem. 2016, 59, 8712-8756; b) A.
Reichelt, S. F. Martin, Acc. Chem. Res. 2006, 39, 433-442; c) D.
Y. K. Chen, R. H. Pouwer, J. A. Richard, Chem Soc Rev 2012,
41, 4631-4642.
7
6
67% yield, 334 TON,
96% de, >99% ee
c
[2] a) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911-936; b)
H. Pellissier, Tetrahedron 2008, 64, 7041-7095; c) H. Lebel, J. F.
Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103,
977-1050.
CHF2
F2HC
(S)
EDA, Mb(H64G,V68A)
Na2S2O4, KPi (pH 7)
(R)
CO2Et
F3C
N
F3C
N
[3] a) H. J. Bohm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K.
Muller, U. Obst-Sander, M. Stahl, Chembiochem 2004, 5, 637-
643; b) C. Isanbor, D. O'Hagan, J. Fluorine Chem. 2006, 127,
303-319; c) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur,
Chem Soc Rev 2008, 37, 320-330; d) E. P. Gillis, K. J. Eastman,
M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015,
58, 8315-8359; e) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med.
Chem. 2014, 57, 2832-2842; f) J. Wang, M. Sanchez-Rosello, J.
L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A.
Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432-2506.
[4] a) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591; b) Y.
Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D.
Marciano, E. Gershonov, S. Saphier, J. Med. Chem. 2017, 60,
797-804.
8
9
36% yield, 99% de, 98% ee
known methods
(refs. 16, 10c)
H
N
SO2Me
F2HC
H
(S)
N
(R)
F
N
O
F3C
difluoro analog of TRPV1 inhibitor
10
(
)
Scheme 3. Biocatalytic cyclopropanation of α-CH2F- and α-CF3-styrene and
formal synthesis of a CHF2 isostere of a TRPV1 inhibitor drug candidate.
[5] E. J. Barreiro, A. E. Kummerle, C. A. M. Fraga, Chem. Rev. 2011,
111, 5215-5246.
[6] a) J. A. Erickson, J. I. Mcloughlin, J. Org. Chem. 1995, 60, 1626-
1631; b) C. D. Sessler, M. Rahm, S. Becker, J. M. Goldberg, F.
Wang, S. J. Lippard, J Am Chem Soc 2017, 139, 9325-9332; c)
Y. Zafrani, G. Sod-Moriah, D. Yeffet, A. Berliner, D. Amir, D.
Marciano, S. Elias, S. Katalan, N. Ashkenazi, M. Madmon, E.
Gershonov, S. Saphier, J. Med. Chem. 2019, 62, 5628-5637.
[7] F. Narjes, K. F. Koehler, U. Koch, B. Gerlach, S. Colarusso, C.
Steinkuhler, M. Brunetti, S. Altamura, R. De Francesco, V. G.
Matassa, Bioorg. Med. Chem. Lett. 2002, 12, 701-704.
[8] a) M. Bos, T. Poisson, X. Pannecoucke, A. B. Charette, P.
Jubault, Chem. Eur. J. 2017, 23, 4950-4961; b) T. Ishikawa, N.
Kasai, Y. Yamada, T. Hanamoto, Tetrahedron 2015, 71, 1254-
1260; c) K. J. Hock, L. Mertens, R. M. Koenigs, Chem. Commun.
2016, 52, 13783-13786; d) Y. Y. Duan, J. H. Lin, J. C. Xiao, Y.
C. Gu, Chem. Commun. 2017, 53, 3870-3873; e) J. Decaens, S.
Couve-Bonnaire, A. Charette, T. Poisson, P. Jubault, Chemistry
2020, doi: 10.1002/chem.202003822.
[9] a) M. Bos, W. S. Huang, T. Poisson, X. Pannecoucke, A. B.
Charette, P. Jubault, Angew. Chem. Int. Ed. 2017, 56, 13319-
13323. b) Z.-Y. Cao, W. Wang, K. Liao, X. Wang, J. Zhou, J. Ma,
Org. Chem. Front. 2018, 5, 2960–2968.
[10] a) P. S. Coelho, E. M. Brustad, A. Kannan, F. H. Arnold, Science
2013, 339, 307-310; b) M. Bordeaux, V. Tyagi, R. Fasan, Angew.
Chem. Int. Ed. 2015, 54, 1744–1748; c) P. Bajaj, G. Sreenilayam,
V. Tyagi, R. Fasan, Angew. Chem. Int. Ed. 2016, 55, 16110–
16114; d) D. Vargas, R. Khade, Y. Zhang, R. Fasan, Angew.
In summary, we reported the first example of a biocatalytic
system for the asymmetric cyclopropanation of difluoromethylated
alkenes. Using two engineered myoglobins, Mb(H64V,V68A) and
Mb(H64G,V68A),
a
broad
panel
of
trisubstituted
difluoromethylcyclopropanes were synthesized with good
efficiency (up to 99% yield) and high to excellent stereoselectivity
(up to >99% de and ee) using ethyl 2-diazoacetate as carbene
donor. The scope of these biocatalysts extends to include the
stereoselective cyclopropanation of unactivated olefins as well as
mono- and trifluoro-methylated olefins, as exemplified through the
successful synthesis of enantioenriched 3q, 5 and 7, respectively.
The possibility of achieving enantiodivergent selectivity in this
transformation
was
also
demonstrated,
with
a
stereocomplementary myoglobin variant showing up to -87% ee
for this transformation. Finally, this strategy could be readily
applied to enable the highly stereoselective synthesis of a key
synthon for the chemoenzymatic synthesis of a difluoromethyl
isostere of a drug candidate. This methodology is expected to
create new opportunities for the biocatalytic asymmetric synthesis
of high-value fluorinated building blocks for organic and medicinal
chemistry.
This article is protected by copyright. All rights reserved.