N. Zsuzsa Kiss et al. / Tetrahedron Letters 53 (2012) 207–209
209
Table 2
a-aminophosphonates 2a–g as oils in purities of P99%. For details, see Table 1,
entries 2–5, 7, 8 and 10.
Summary of the reaction enthalpy (DHR), reaction Gibbs free energy (DGR) in
kJ molꢀ1, and reaction entropy (
Entropy was calculated at 400 K
D
SR) in J molꢀ1 Kꢀ1 of the transformation 1 ? 2.
31P NMR (CDCl3)
(M+H)found Formula
(M+H)calcd
Species
D
HR
D
GR
DSR
Measured Literature
1
3
4
5
6
7
2
0.00
170.9
73.3
85.0
73.6
125.1
ꢀ11.7
0.00
0.00
2a 23.7
2b 23.6
2c 24.1
2d 23.7
2e 23.7
2f 23.4
2g 24.3
23.833
286.1572 C14H25NO3P 286.1572
300.1731 C15H27NO3P 300.1729
225.3
131.5
145.4
130.1
176.3
ꢀ5.1
136.0
145.6
151.0
122.5
149.2
16.5
24.029
286.1571
300.1725
C
C
14H25NO3P 286.1572
15H27NO3P 300.1729
22.933
24.234
334.1572 C18H25NO3P 334.1572
348.1735 19H27NO3P 348.1729
326.1884 C17H29NO3P 326.1885
C
the amine in a twofold excess (that means three equivalents). The
substitution was enhanced by the neighbouring effect of the adja-
cent P@O group. This novel phenomenon was supported by high
level DFT calculations.
Additional spectral characterisation:
Compound 2b: 13C NMR (CDCl3) d 13.8 (CH2CH2CH3), 16.3 (3J = 13.3, OCH2CH3), 16.4
(2J = 13.2, OCH2CH3), 20.2 (CH2CH3), 31.9 (CH2CH2CH3), 47.7 (J = 16.6, NCH2), 61.1
(J = 152.6, PCN), 6⁄2.7 (1J = 7.0, OCH2), ⁄62.9 (1J = 7.1, OCH2), 127.7 (J = 3.2, C40),
128.3 (J = 2.5, C20), 128.5 (J = 6.2, C30), 136.2 (J = 4.1, C10), ⁄may be reversed; 1H
NMR (CDCl3) d 0.86 (t, J = 7.2, 3H, CH2CH2CH3), 1.14 (t, J = 7.1, 3H, OCH2CH3), 1.28
(t, J = 7.1, OCH2CH3) and 1.23–1.36 (m, CH2) partially overlapped, total integra-
tion = 5, 1.38–1.51 (m, 2H, CH2), 1.75 (br s, 1H, NH), 2.39–2.57 (m, 2H, NCH2),
Acknowledgements
This project was supported by the Hungarian Scientific and Re-
search Fund (OTKA K83118). This work is connected to the scien-
tific programme of the ‘Development of quality-oriented and
harmonized R+D+I strategy and functional model at BME’. This
project is also supported by the New Széchenyi Plan (Project ID:
TÁMOP-4.2.1/B-09/1/KMR-2010-0002). The authors are indebted
to Professor Dr Harry R. Hudson (London Metropolitan University)
for his advice.
3.77–3.91 (m, 1H, NCHP), 3.91–4.14 (m, 4H, 2 ꢁ OCH2), 7.24–7.47 (m, 5H, Ar). d29
H
(CDCl3) 0.85 (t, J = 7.1, 3H), 1.14 (t, J = 7.2, 3H), 1.27 (t, J = 7.0, 3H), 1.30–1.40 (m,
2H), 1.40–1.50 (m, 2H), 2.05–2.25 (br s, 1H), 2.35–2.60 (m, 2H), 3.70–4.20 (m, 4H),
7.20–7.50 (m, 5H ArH).
Compound 2c: 13C NMR (CDCl3)
d
16.2 (3J = 17.2, OCH2CH3), 16.3 (2J = 17.2,
OCH2CH3), 21.3 (CH(CH3)2), 23.9 (CH(CH3)2), 45.7 (J = 16.0, CHMe2), 58.3 (J = 153.6,
PCN), 62.6 (1J = 7.0, OCH2), 63.0 (1J = 7.0, OCH2), 127.6 (J = 3.1, C40), 128.3 (J = 2.4,
C20),⁄ 128.4 (J = 6.3, C30),⁄ 136.6 (J = 2.9, C10), ⁄may be reversed; 1H NMR (CDCl3) d
0.99 (d, J = 6.3, 3H, CHCH3), 1.01 (d, J = 6.7, 3H, CHCH3), 1.11 (t, J = 7.1, 3H, CH2CH3),
1.30 (t, J = 7.1, 3H, CH2CH3), 1.88 (br s, 1H, NH), 2.65–2.73 (m, 1H, CHMe2), 3.70–3.83
(m, 1H, NCH), 3.88–4.20 (m, 4H, 2 ꢁ OCH2), 7.24–7.43 (m, 5H, Ar).
References and notes
Compound 2d: 13C NMR (CDCl3)
d
16.2 (3J = 14.4, OCH2CH3), 16.3 (2J = 14.4,
1. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity;
Kukhar, V. P., Hudson, H. R., Eds.; Wiley: Chichester, 2000.
2. Fields, S. C. Tetrahedron 1999, 55, 12237.
3. Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. J. Med. Chem. 2003, 46, 2641.
4. Bird, J.; De Mello, R. C.; Harper, G. P.; Hunter, D. J.; Karran, E. H.; Markwell, R. E.;
Miles-Williams, A. J.; Rahman, S. S.; Ward, R. W. J. Med. Chem. 1994, 37, 158.
5. Liu, W.; Royers, C. J.; Fisher, A. J.; Toney, M. Biochemistry 2002, 41, 12320.
6. Kabachnik, M. I.; Medved, T. Y. Dokl. Akad. Nauk SSSR 1952, 689. Chem. Abstr.
1953, 47, 2724b.
7. Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528.
8. Cherkasov, R. A.; Galkin, V. I. Russ. Chem. Rev. 1998, 67, 857.
9. Ranu, B. C.; Hajra, A. Green Chem. 2002, 4, 551.
10. Kabachnik, M. M.; Zobnina, E. V.; Beletskaya, I. P. Synlett 2005, 1393.
11. Mu, X.-J.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2006, 47, 1125.
12. Zahouily, M.; Elmakssoudi, A.; Mezdar, A.; Rayadh, A.; Sebti, S. J. Chem. Res.
2005, 324.
OCH2CH3), 20.3 (CH(CH3)2), 20.5 (CH(CH3)2), 28.2 (CHMe2), 55.9 (J = 16.4, NCH2),
61.2 (J = 152.5, PCN), 62.6 (1J = 6.9, OCH2), 62.9 (1J = 7.0, OCH2), 127.6 (J = 3.2, C40),
128.2 (J = 2.6, C20),⁄ 128.4 (J = 6.2, C30),⁄ 136.2 (J = 4.1, C10), ⁄may be reversed; 1H
NMR (CDCl3) d 0.87 (d, J = 6.8, 3H, CHCH3), 0.89 (d, J = 6.8, 3H, CHCH3), 1.14 (t,
J = 7.1, 3H, CH2CH3), 1.28 (t, J = 7.1, 3H, CH2CH3), 1.63–1.74 (m, 1H, CHMe2), 1.88
(br s, 1H, NH), 2.25–2.33 (m, 2H, CH2), 3.79–3.92 (m, 1H, NCH), 3.92–4.18 (m, 4H,
2 ꢁ OCH2), 7.23–7.48 (m, 5H, Ar).
Compound 2f: 13C NMR (CDCl3)
d
16.2 (2J = 12.8, OCH2CH3), 16.3 (2J = 12.8,
OCH2CH3), 36.1 (PhCH2), 49.2 (J = 16.8, NCH2), 61.0 (J = 152.9, PCN), 62.7 (1J = 7.0,
OCH2), 62.9 (1J = 7.1, OCH2), 126.1 (C400), 127.8 (J = 3.2, C40), 128.3 (J = 2.6, C20),a
128.3 (C200),b 128.4 (J = 6.1, C30),a 128.7 (C300),b 135.9 (J = 4.3, C10), 139.8 (C100), a,bmay
be reversed; 1H NMR (CDCl3) d 1.11 (t, J = 7.1, 3H, CH2CH3), 1.23 (t, J = 7.1, 3H,
CH2CH3), 1.80 (br s, 1H, NH), 2.70–2.84 (m, 4H, 2 ꢁ CH2), 3.75–3.84 (m, 1H, NCH),
3.87–4.10 (m, 4H, 2 ꢁ OCH2), 7.10–7.40 (m, 10H, Ar).
32. Keglevich, G.; Tóth, V. R.; Drahos, L. Heteroat. Chem. 2011, 22, 15.
33. Qian, C. T.; Huang, T. S. J. Org. Chem. 1998, 63, 4125.
13. Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Synthesis 2004, 2692.
14. Ghosh, R.; Maiti, S.; Chakraborty, A.; Maiti, D. K. J. Mol. Catal. A: Chem. 2004,
210, 53.
15. Xu, F.; Luo, Y.; Wu, J.; Shen, Q.; Chen, H. Heteroat. Chem. 2006, 17, 389.
16. Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001, 1698.
17. Lee, S.; Lee, J. K.; Song, C. E.; Kim, D.-C. Bull. Korean Chem. Soc. 2002, 23, 667.
18. Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72, 1263.
19. Wu, J.; Sun, W.; Xia, H.-G.; Sun, X. Org. Biomol. Chem. 2006, 4, 1663.
20. Sun, P.; Hu, Z.; Huang, Z. Synth. Commun. 2004, 34, 4293.
21. Bhattacharya, A. K.; Kaur, T. Synlett 2007, 745.
34. Matveeva, E. D.; Zefirov, N. S. Doklady Chem. 2008, 420, 137.
35. Moonen, K.; Meenen, E.; Verwée, A.; Stevens, C. V. Angew. Chem. 2005, 44, 7407.
36. Beers, S. A.; Schwender, C. F.; Loughney, D. A.; Malloy, E.; Demarest, K.; Jordan,
J. Bioorg. Med. Chem. 1996, 4, 1693.
37. Keglevich, G.; Kiss, N. Z.; Menyhárd, D.; Fehérvári, A.; Csontos, I. Heteroat. Chem.
2011. accepted for publication.
38. Keglevich, G.; Fehérvári, A.; Csontos, I. Heteroat. Chem. 2011, 22, 599.
39. All computations were carried out using the Gaussian03 program package
(G03).40 Geometry optimizations and subsequent frequency analyses were
carried out at the B3LYP/6-31G(d,p) level of theory.41 To model the solution, the
IEF-PCM (integral equation formalism polarizable continuum medium) method
22. Zhan, Z.-P.; Li, J.-P. Synth. Commun. 2005, 35, 2501.
23. Wu, J.; Sun, W.; Wang, W.-Z.; Xiu, H.-G. Chin. J. Chem. 2006, 24, 1054.
24. Matveeva, E. D.; Podrugina, T. A.; Tishkovskaya, E. V.; Tomilova, L. G.; Zefirov, N.
S. Synlett 2003, 2321.
25. Xu, F.; Luo, Y.; Deng, M.; Shen, Q. Eur. J. Org. Chem. 2003, 4728.
26. Ravinder, K.; Vijender Reddy, A.; Krishnaiah, P.; Venkataramana, G.; Niranjan
Reddy, V. L.; Venkateswarlu, Y. Synth. Commun. 2004, 34, 1677.
27. Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
28. Keglevich, G.; Szekrényi, A. Lett. Org. Chem. 2008, 5, 616.
29. Gancarz, R.; Gancarz, I.; Walkowiak, U. Phosphorus, Sulfur Silicon Relat. Elem.
1995, 104, 45.
was applied, using the relative permittivity of THF as
a compromise.
Thermodynamic functions U, H, G and S were computed at 400 K, using the
quantum chemical rather than the conventional thermodynamic reference state.
40. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
Gaussian 03 Revision 6.0, Gaussian, Inc., Pittsburgh, PA, 2003.
30. Kaboudin, B. Tetrahedron Lett. 2003, 44, 1051.
31. General procedure for the preparation of
of 0.10 g (4.1 mmol) of
-hydroxyphosphonate [1, dP (CDCl3) 21.5]32 and
12.3 mmol of amine [propylamine (0.10 mL), benzylamine (0.13 mL) or
cyclohexylamine (0.14 mL)] in sealed tube was irradiated in CEM
a-aminophosphonates 2a–g: A mixture
a
a
a
Microwave reactor equipped with a pressure controller at the temperatures
and for the times shown in Table 1. The volatile components were removed
under reduced pressure. The residue obtained was purified by flash column
chromatography using silica gel and 3% MeOH in CHCl3 as the eluent to afford
41. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.