3
compounds all proceeded smoothly to give 3,4-disubstituted
quinolines in good to excellent yields (5h-5l). Interestingly, four-
membered and eight-membered rings were also applicable to this
reaction and stably present in the corresponding quinolines.
the substituents had a significant impact on the yield of the
reaction, regardless of the electron-donating or -withdrawing
ability of the substituents on the arylamine, the reactions were
generated the desired quinolines in high yields.
Scheme 4. Examples of quinoline derivatives synthesis.a
In summary, an efficient and regioselective synthesis of
multiply substituted quinolines from aldehyde, aniline, and
carbonyl compounds, or aniline and 1,3-diketones have been
presented. The yields are practically independent either of the
nature of the ketones used or of its substitution and the electronic
properties of the substituents on the arylamines, aldehydes, and
ketones. The efficiency and functional group tolerance of this
procedure have been fully demonstrated by synthesizing a
number of substituted quinolines. Considering the relatively
inexpensive catalytic system and the commercial availability of
the starting materials, this method should find numerous
applications, including in the industrial field. Further
investigations toward the scope of the reaction, a detailed
mechanism, and applications in organic synthesis are ongoing in
our laboratory.
Acknowledgements
X.Z. gratefully acknowledges support from the National
Natural Science Foundation of China (21502100, 21302105) and
Research fund for the key scientific research program
of Henan Educational Committee (15A150021).
a Reaction conditions: arylamine 1 (0.5 mmol), aromatic aldehydes 2 (0.5
mmol), ketone 3 (0.75 mmol), AgOTf (0.025 mol, 5 mol%), HOTf (0.05
mmol, 10 mol%), in toluene (2 mL) at 120 oC in air for 12 h. Yields of
isolated products are reported.
References and notes
Scheme 5. Examples of quinoline derivatives synthesisa.
1.
(a) Caballero, A.; Despagnet-Ayoub, E.; Díaz-Requejo, M. M.; D
íaz-Rodrí -
- , P. J. Science 2011,
332, 835; (b) Weibel, J.-M.; Blanc, A.; Pale, P.; Chem. Rev. 2008,
108, 3149; (c) Yamamoto, Y. Chem. Rev. 2008, 108, 3199; (d)
Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T.; J. Am. Chem.
Soc. 2010, 132, 4072; (e) Oh, C. H.; Karmakar, S.; Park, H.-S.;
Ahn, Y.-C.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792; (f)
Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132,
12150; (g) Su, S.; Porco, J. A. Jr. J. Am. Chem. Soc. 2007, 129,
7744; (h) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc.
2007, 129 , A.; Dí -
, P. J. Angew. Chem., Int.
Ed. 2010, 49, 7092; (j) Murakami, K.; Hirano,K.; Yorimitsu, H.;
Oshima, K. Angew. Chem., Int. Ed. 2008, 47, 5833; (k) Li, Z.;
Capretto, D. A.; Rahaman, R.; He, C. Angew. Chem., Int. Ed. 2007,
46, 5184; (l) Sun, J.; Kozmin, S. A. Angew. Chem., Int. Ed. 2006,
45, 4991.
2.
3.
Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132.
- -Dorado, M.; Rodríguez-García. I.
Chem. Rev. 2008, 108, 3174.
4.
(a) Ridley, R. G. Nature 2002, 415, 686; (b) Klingenstein, R.;
Melnyk, P.; Leliveld, S. R.; Ryckebusch, A.; Korth, C. J. Med.
Chem. 2006, 49, 5300; (c) Chen, Y.-L.;Zhao, Y.-L.; Lu, C.-M.;
Tzeng, C.-C.; Wang, J.-P.; Bioorg. Med. Chem. 2006, 14, 4373;
(d) Benedetti, P.; Mannhold, R.; Cruciani, G.; Ottaviani, G. Bioorg.
Med. Chem. 2004, 12, 3607; (e) Narender, P.; Srinivas, U.;
Ravinder, M.; Rao, B. A.; Ramesh, C.; Harakishore, K.;
Gangadasu, B.; Murthy, U. S. N.; Rao, V. J. Bioorg. Med. Chem.
2006, 14, 4600.
a
Reaction conditions: arylamine 1 (0.5 mmol), 1,3-dione 3 (0.75 mmol),
AgOTf (0.025 mol, 5 mol%), HOTf (0.05 mmol, 10 mol%), in toluene (2 mL)
at 120 oC in air for 12 h. Yields of isolated products are reported.
5.
(a) Manske, R. H. F.; Kukla, M. Org. React. 1953, 7, 59; (b)
Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006, 71, 1668; (c)
Theoclitou, M.-E.; Robinson, L. A. Tetrahedron Lett. 2002, 43,
3907; (d) Eisch, J. J.; Dluzniewski, T. J. Org. Chem. 1989, 54,
1269.
Bergstrom, F. W. Chem. Rev 1944, 35, 77.
Nitidandhaprabhas, O. Nature 1966, 212, 504.
Born, J. L. J. Org. Chem. 1972, 37, 3952.
Cragoe, E. J.; Robb, C. M. Org. Synth. 1973, 5, 635.
On this basis the plausible mechanism, we were delighted to
find that arylamine with 1-benzoylacetone could be conducted
successfully to afford the quinolines. The scope of this reaction
for the synthesis of quinolines has been further examined, the
results shown in Scheme 5. We were pleased to find that several
functional groups, such as methyl, methoxy, fluoro, or chloro
groups, on the aniline ring were perfectly tolerated. The nature of
6.
7.
8.
9.