8836
M. Matsui et al. / Tetrahedron 64 (2008) 8830–8836
4.3.10. 2,7-Bis(diethylamino)-1,3,4,6,8,9-hexafluorophenazine (4d)
C
16H6F11N3, Mw¼449.23, monoclinic, P21/c, Z¼4, a¼10.6161(8),
Mp 190.5–191.0 ꢀC; 1H NMR (CDCl3)
d
¼1.21 (t, J¼7.2 Hz, 6H),
b¼12.2022(9), c¼13.328(1) Å,
b
¼111.433(5)ꢀ, Dcalcd¼1.853 g/cm3,
3.47 (q, J¼7.2 Hz, 4H); 19F NMR (CDCl3, ext. CFCl3)
d
¼ꢁ154.65 (t,
15,540 reflections were collected, 2893 unique (Rint¼0.080), 2093
J¼15.5 Hz, 2F), ꢁ141.62 (d, J¼15.5 Hz, 2F), ꢁ136.01 (d, J¼15.5 Hz,
2F); EIMS (70 eV) m/z (rel intensity) 430 (Mþ; 38), 415 (100), 371
(22), 343 (24). Anal. Calcd for C20H20F6N4: C, 55.81; H, 4.68; N,
13.02%. Found: C, 55.74; H, 4.71; N, 12.95%.
observed (I>2
s(I)), 275 parameters, R1¼0.0455, wR2¼0.1298,
GOF¼0.994, refinement on F2. The measurement was performed on
a Rigaku Raxis-RAPID imaging plate diffractometer with a graphite-
monochromated Cu K
a maximum 2
a maximum 2
a radiation. The data were collected to
q
value of 136.5ꢀ at room temperature for 3a and to
value of 136.4ꢀ at ꢁ180(1) ꢀC under cold N2 gas flow
4.3.11. 1-Ethylamino-3,4,6,8,9-pentafluoro-2,7-bis(trifluoromethyl)-
q
phenazine (6a)
for 4d and 6a. 24, 30, and 26 (D4¼30ꢀ) images were measured
using an oscillation technique for 3a, 4d, and 6a, respectively. An
absorption correction was applied for 4d and 6a, but not applied for
Mp 110.5–111.0 ꢀC; 1H NMR (CDCl3)
d
¼1.43 (t, J¼7.1 Hz, 3H),
3.63–3.67 (m, 2H), 6.87 (br s, 1H); 19F NMR (CDCl3, ext. CFCl3)
d
¼ꢁ166.48 (d, J¼17.1 Hz, 1F), ꢁ150.97 to ꢁ150.89 (m, 1F), ꢁ136.29
3a. The structures were solved by the direct method (SHELX9712
)
to ꢁ136.14 (m, 1F), ꢁ127.67 to ꢁ127.47 (m, 1F), ꢁ119.87 to ꢁ119.65
(m, 1F), ꢁ56.12 to ꢁ56.02 (m, 3F), ꢁ52.40 (s, 3F); EIMS (70 eV) m/z
(rel intensity) 449 (Mþ; 92), 434 (34), 430 (31), 429 (50), 414 (100),
408 (35), 388 (34), 387 (29). Anal. Calcd for C16H6F11N3: C, 42.78; H,
1.35; N, 9.35%. Found: C, 43.78; H, 1.72; N, 9.39%.
and refined by least-squares calculations using the Crystal Structure
program package.13 All non-hydrogen atoms for these compounds
were refined anisotropically. The hydrogen atoms for 3a and 4d
were located on the calculated positions and not refined. For 6a, the
hydrogen atom of the amino group was found in the difference
Fourier map and only the positional parameters were refined. The
other hydrogen atoms were located on the calculated positions and
not refined.
Crystallographic data have been deposited at the CCDC,12 Union
Road, Cambridge CB2 1EZ, UK and copies can be obtained on re-
quest, free of charge, by quoting the publication citation and the
deposition numbers for 3a (CCDC297182), 4d (CCDC297183), and
6a (CCDC297184), respectively.
4.3.12. Pyridazino[2,3-b]-1,2,3,4,6,11-hexafluorophenazine (8a)
Mp>300 ꢀC; 1H NMR (acetone-d6)
d
¼3.71 (br s, 2H), 6.94 (s, 4H);
19F NMR (acetone-d6, ext. CFCl3)
d
¼ꢁ163.76 (s, 2F), ꢁ160.91 to
ꢁ160.88 (m, 2F), ꢁ156.45 to ꢁ156.42 (m, 2F); EIMS (70 eV) m/z (rel
intensity) 344 (Mþ; 93), 343 (100), 328 (26), 207 (35). Anal. Calcd
for C14H6F6N4: C, 48.85; H, 1.76; N, 16.28%. Found: C, 48.61; H, 2.10;
N, 15.98%.
4.3.13 . N,N0-Bis(1,3,4,6,7,8,9-heptafluoro-2-phenazinyl)-ethane-
Supplementary data
1,2-diamine (9a)
Mp 297.0–297.5 ꢀC (dec); 1H NMR (acetone-d6)
d
¼2.78 (s, 4H),
The calculated partial charge, fukui function (f ), and the carte-
*
4.17 (br s, 2H); 19F NMR (acetone-d6, ext. CFCl3)
d¼ꢁ156.95 (t, J¼
sian coordinates of the optimized structures are provided. Sup-
plementary data associated with this article can be found in the
16.5 Hz, 2F), ꢁ156.82 (br, 2F), ꢁ156.74 to ꢁ156.66 (m 2F), ꢁ155.04
(t, J¼16.5 Hz, 2F), ꢁ154.37 (t, J¼16.5 Hz, 2F), ꢁ154.13 (t, J¼16.5 Hz,
2F), ꢁ143.01 (br s, 2F); EIMS (70 eV) m/z (rel intensity) 668 (Mþ;
20), 335 (100), 334 (95). Anal. Calcd for C26H6F14N6: C, 46.72; H,
0.90; N, 12.57%. Found: C, 46.97; H, 0.69; N, 12.61%.
References and notes
1. Leyva, E.; Monreal, E.; Medina, C.; Leyva, S. Tetrahedron Lett. 1997, 38,
7847–7848.
2. (a) Hudson, A. G.; Pedler, A. E.; Tatlow, J. C. Tetrahedron 1970, 26, 3791–3797; (b)
Hudson, A. G.; Pedler, A. E.; Tatlow, J. C. Tetrahedron Lett. 1968, 17, 2143–2146.
3. Hudson, A. G.; Jenkins, M. L.; Pedler, A. E.; Tatlow, J. C. Tetrahedron 1970, 26,
5781–5787.
4.3.14 . N,N0-Bis(1,3,4,6,7,8,9-heptafluoro-2-phenazinyl)-butane-
1,4-diamine (9b)
Mp 295.0–295.5 ꢀC (dec); 1H NMR (CDCl3)
d
¼2.78 (s, 4H), 3.83
(s, 4H), 6.62 (br s, 2H); 19F NMR (acetone-d6, ext. CFCl3)
d
¼ꢁ158.96
4. Kitamura, T.; Fudemoto, H.; Wada, Y.; Murakoshi, K.; Kusaba, M.; Nakashima,
N.; Majima, T.; Yanagida, S. J. Chem. Soc., Faraday Trans. 1997, 93, 221–229.
5. Matsui, M. Fluorine-Containing Dyes. In Functional Dyes; Kim, S.-H., Ed.;
Elsevier: Amsterdam, 2006; Chapter 7 and references cited therein.
6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J.
V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
Revision B.02; Gaussian: Pittsburgh PA, 2003.
(br, 2F), ꢁ157.33 (t, J¼16.0 Hz, 2F), ꢁ156.74 to ꢁ156.66 (m, 2F),
ꢁ155.05 (t, J¼16.0 Hz, 2F), ꢁ154.46 (t, J¼16.0 Hz, 2F), ꢁ154.27 (t,
J¼16.0 Hz, 2F), ꢁ143.37 (br s, 2F); EIMS (70 eV) m/z (rel intensity)
696 (Mþ; 20), 376 (32), 375 (28), 374 (37), 356 (47), 334 (100). Anal.
Calcd for C28H10F14N6: C, 48.29; H, 1.45; N, 12.07%. Found: C, 48.54;
H 1.76; N, 12.05%.
5. X-ray crystallography
The single crystals of compounds 3a, 4d, and 6a were obtained
by a solvent diffusion method using hexane and dichloromethane.
Crystal data for 3a: C14H6F7N3, Mw¼349.21, monoclinic, P21/n, Z¼4,
a¼5.391(3), b¼12.168(7), c¼19.82(1) Å,
b
¼86.99(3)ꢀ, Dcalcd
¼
1.786 g cmꢁ3, 10,700 reflections were collected, 2207 unique
7. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
8. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
(Rint¼0.062), 1558 observed (I>2 (I)), 229 parameters, R1¼0.052,
s
wR2¼0.133, GOF¼1.152, refinement on F2. Crystal data for 4d:
9. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200–206.
10. Wong, M. W. Chem. Phys. Lett. 1996, 256, 391–399.
11. Birchall, J. M.; Haszeldine, R. N.; Kemp, J. E. G. J. Chem. Soc. C 1970, 449–455.
12. Sheldrick, G. M. SHELX97, Program for Crystal Structure Refinement; University of
Go¨ttingen: Go¨ttingen, Germany, 1997.
C
20H20F6N4, Mw¼430.40, triclinic, P-1, Z¼1, a¼5.194(1), b¼9.331(2),
c¼10.250(2) Å,
a
¼108.02(1),
b
¼92.71(1),
g
¼94.34(1)ꢀ, Dcalcd
¼
1.521 g/cm3, 4883 reflections were collected, 1662 unique
(Rint¼0.086), 978 observed (I>2 (I)), 137 parameters, R1¼0.0626,
s
13. Crystal Structure ver 3.70, Crystal Structure Analysis Package, RIGAKU and
RIGAKU/MSC, 2000–2005.
wR2¼0.1713, GOF¼0.956, refinement on F2. Crystal data for 6a: