P.-A. Nocquet, D. Hazelard, P. Compain
petroleum ether, 1:2). IR (film): ν = 1728, 1688 cm–1. 1H NMR authors are grateful to Dr. Michel Miesch for helpful discussions.
SHORT COMMUNICATION
˜
(300 MHz, CDCl3): δ = 7.38–7.21 (m, 5 H, Ph), 4.51 (d, J =
14.7 Hz, 1 H, CH2Ph), 4.45 (d, J = 14.7 Hz, 1 H, CH2Ph), 3.71 (s,
3 H, CO2Me), 3.32 (m, 2 H, 6-H), 2.28 (dd, J = 6.1, 8.8 Hz, 1 H,
1-H), 2.19 (dd, J = 8.3, 6.3 Hz, 2 H, 7-H), 1.58 (dd, J = 8.8, 4.0 Hz,
1 H, 2a-H), 1.35 (dd, J = 5.9, 4.1 Hz, 1 H, 2b-H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 173.6 (CO), 172.0 (NCO), 136.3 (Cq-Ar),
128.8 (2 CH-Ar), 128.4 (2 CH-Ar), 127.8 (1 CH-Ar), 52.0 (OMe),
47.6 (CH2Ph), 44.2 (C-6), 31.6 (C-3), 25.3 (C-1), 22.9 (C-7), 19.3
(C-2) ppm. HRMS (ESI): calcd. for C15H17NO3Na [M + Na]+
282.110; found 282.110.
We further thank Michel Schmitt for NMR measurements.
[1]
a) See, for example: N. De Kimpe in Comprehensive Heterocy-
clic Chemistry II (Ed.: A. Padwa), Elsevier, Oxford, 1996, vol.
1B, ch. 1.18, pp. 507–589; b) S. Robin, G. Rousseau, Eur. J.
Org. Chem. 2002, 3099–3114; c) F. Couty, G. Evano, D. Prim,
Mini-Rev. Org. Chem. 2004, 1, 133–148.
[2] a) F. Couty, G. Evano, Synlett 2009, 3053–3064; b) F. Couty,
F. Durrat, G. Evano in Targets in Heterocyclic Systems – Chem-
istry and Properties (Eds.: O. A. Attanasi, D. Spinelli), Italian
Society of Chemistry, Rome, 2005, vol. 9, pp. 186–210.
[3] N. De Rycke, O. David, F. Couty, Org. Lett. 2011, 13, 1836–
1839.
[4] a) P. Compain, O. R. Martin (Eds.), Iminosugars: from Synthe-
sis to Therapeutic Applications, Wiley-VCH, Weinheim, 2007;
b) A. E. Stütz (Ed.), Iminosugars as Glycosidase Inhibitors: No-
jirimycin and Beyond, Wiley-VCH, New York, 1999.
[5] For recent examples, see: a) P. Compain, C. Decroocq, J. Iehl,
M. Holler, D. Hazelard, T. Mena Barragán, C. Ortiz Mellet, J.-
F. Nierengarten, Angew. Chem. Int. Ed. 2010, 49, 5753–5756;
b) C. Decroocq, D. Rodriguez-Lucena, V. Russo, T. Mena Bar-
ragán, C. Ortiz Mellet, P. Compain Chem. Eur. J. 2011, DOI:
10.1002/chem.201102266; c) V. Chagnault, P. Compain, K. Le-
winski, K. Ikeda, N. Asano, O. R. Martin, J. Org. Chem. 2009,
74, 3179–3182; d) G. Godin, E. Garnier, P. Compain, O. R.
Martin, K. Ikeda, N. Asano, Tetrahedron Lett. 2004, 45, 579–
581.
[6] P. Compain, O. R. Martin, C. Boucheron, G. Godin, L. Yu, K.
Ikeda, N. Asano, ChemBioChem 2006, 7, 1356–1359.
[7] a) G. B. Evans, R. H. Furneaux, B. Greatrex, A. S. Murkin,
V. L. Schramm, P. C. Tyler, J. Med. Chem. 2008, 51, 948–956;
b) the alkylation step afforded diester 5 in 41% yield.
[8] To the best of our knowledge, only one example of the forma-
tion of cyclobutanes by way of a Dieckmann reaction has been
reported with no mention of the yield obtained: M. S. Chande,
V. Suryanarayan, Tetrahedron Lett. 2002, 43, 5173–5175.
[9] a) T. R. Hoye, V. Dvornikovs, E. Sizova, Org. Lett. 2006, 8,
5191–5194; b) V. Rietsch, L. Miesch, D. Yamashita, M.
Miesch, Eur. J. Org. Chem. 2010, 6944–6948.
[10] See, for example: a) Y. Kimura, S. Atarashi, K. Kawakami, K.
Sato, I. Hayakawa, J. Med. Chem. 1994, 37, 3344–3352; b)
R. C. Petter, S. Banerjee, S. Englard, J. Org. Chem. 1990, 55,
3088–3097; c) C. M. Moody, D. W. Yound, J. Chem. Soc. Per-
kin Trans. 1 1997, 3519–3530; d) K. Satoh, A. Imura, A. Miya-
dera, K. Kanai, Y. Yukimoto, Chem. Pharm. Bull. 1998, 46,
587–590; e) Z. Guo, P. Orth, S.-C. Wong, B. J. Lavey, N.-Y.
Shih, X. Niu, D. J. Lundell, V. Madison, J. A. Kozlowski, Bi-
oorg. Med. Chem. Lett. 2009, 19, 54–57; f) Y. Yao, W. Fan, W.
Li, X. Ma, L. Zhu, X. Xie, Z. Zhang, J. Org. Chem. 2011, 76,
2807–2813.
[11] Spirocyclopropyl β-lactams were also found to display interest-
ing biological activities, see for example: V. P. Sandanayaka,
A. S. Prashad, Y. Yang, T. Williamson, Y. I. Lin, T. S. Mansour,
J. Med. Chem. 2003, 46, 2569–2571.
[12] a) CCDC-842061 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif; b) ORTEP-3 for Win-
dows: L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565–566.
[13] D. Ferraris, W. J. Drury III, C. Cox, T. Lectka, J. Org. Chem.
1998, 63, 4568–4569.
5-Benzyl-1-hydroxymethyl-5-azaspiro[2.4]heptan-4-one (6b): To a
solution of 6a (84 mg, 0.32 mmol) in THF (0.5 mL) cooled to
–78 °C was added LiBHEt3 (1 m in THF, 1.3 mL, 1.30 mmol,
4 equiv.). The solution was stirred for 1 h at –78 °C and 1.5 h at
–65 °C. Saturated aqueous NaHCO3 (0.4 mL) was added, and the
solution was warmed to 0 °C. H2O2 (35%, 90 μL) was added, and
the solution was stirred at 0 °C for 20 min. The solution was con-
centrated under reduced pressure. Water was added, and the solu-
tion was extracted with CH2Cl2 (3ϫ). The combined organic layer
was dried with Na2SO4, filtered, and concentrated under reduced
pressure. The crude product was purified by flash chromatography
(MeOH/CH2Cl2, 5:95) to afford 6b (67 mg, 89%) as a white pow-
der. TLC: R = 0.30 (silica gel; MeOH/CH Cl , 5:95). IR (film): ν
˜
f
2
2
= 3389, 1665 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.43–7.25 (m,
5 H, Ph), 4.60 (d, J = 14.6 Hz, 1 H, CH2Ph), 4.45 (d, J = 14.6 Hz,
1 H, CH2Ph), 3.89 (dd, J = 11.5, 5.7 Hz, 1 H, CH2OH), 3.46 (m,
1 H, CH2OH), 3.39 (m, 2 H, 6-H), 2.31 (m, 1 H, 1-H), 2.01 (m, 1
H, 7a-H), 1.77 (m, 1 H, 7b-H), 1.38 (dd, J = 9.1, 4.2 Hz, 1 H, 2a-
H), 0.64 (dd, J = 6.3, 4.4 Hz, 1 H, 2b-H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 176.1 (NCO), 136.7 (Cq-Ar), 128.8 (2 CH-
Ar), 128.3 (2 CH-Ar), 127.7 (1 CH-Ar), 63.1 (CH2OH), 47.4
(CH2Ph), 44.5 (C-6), 27.2 (C-3), 25.1 (C-1), 22.4 (C-7), 17.6 (C-2)
ppm. HRMS (ESI): calcd. for C14H17NO2Na [M + Na]+ 254.115;
found 254.117.
5-Benzyl-1-hydroxymethyl-5-azaspiro[2.4]heptane
(6c):
LAH
(34 mg, 0.89 mmol, 3.5 equiv.) was added to a solution of 6a
(66.2 mg, 0.26 mmol) in THF (1.4 mL). The solution was stirred at
reflux for 3 h. After cooling, H2O (1 mL) followed by 10% NaOH
(2 mL) and H2O (3 mL) were added. The solution was filtered
through Celite and concentrated under reduced pressure to afford
6c (55 mg, quant.) as a yellow oil. IR (film): ν = 3342 cm–1. 1H
˜
NMR (300 MHz, CDCl3): δ = 7.31–7.16 (m, 5 H, Ph), 4.12–3.88
(br. s, 1 H, OH), 3.64–3.51 (m, 3 H, CH2OH, CH2Ph), 3.25 (dd, J
= 11.1, 8.6 Hz, 1 H, CH2OH), 2.80 (m, 1 H, 5a-H), 2.61 (m, 1 H,
5b-H), 2.49 (d, J = 9.1 Hz, 1 H, 4a-H), 2.37 (d, J = 9.1 Hz, 1 H,
4b-H), 1.97 (m, 1 H, 7a-H), 1.62 (m, 1 H, 7b-H), 1.04 (m, 1 H, 1-
H), 0.68 (dd, J = 8.8, 4.9 Hz, 1 H, 2a-H), 0.27 (t, J = 5.2 Hz, 1 H,
2b-H) ppm. 13C NMR (75 MHz, CDCl3): δ = 138.5 (Cq-Ar), 129.1
(2 CH-Ar), 128.4 (2 CH-Ar), 127.2 (CH-Ar), 63.9 (C-4 or
CH2OH), 63.7 (C-4 or CH2OH), 60.9 (CH2Ph), 50.0 (C-6), 28.8
(C-7), 25.25 (C-1), 25.2 (C-3), 17.0 (C-2) ppm. HRMS (ESI): calcd.
for C14H20NO [M + H]+ 218.154; found 218.153.
Supporting Information (see footnote on the first page of this arti-
1
1
cle): H NMR, H–1H NOESY NMR, and 13C NMR spectra for
compound 6a.
[14] a) M. Weigl, B. Wünsch, Tetrahedron 2002, 58, 1173–1183; b)
G. Gerona-Navarro, M. A. Bonache, R. Herranz, M. T. Gar-
cia-López, R. González-Muñiz, J. Org. Chem. 2001, 66, 3538–
3547.
[15] Diesters 10 and 11 were prepared by alkylation of methyl-1-
benzylazetidine-2-carboxylate with (R)-(+)-3-bromo-2-methyl-
propionate and methyl-3-bromobutanoate in 14 and 12% yield,
Acknowledgments
This work was supported by the Centre National de la Recherche
Scientifique (CNRS), the University of Strasbourg, and a doctoral
fellowship from the French Department of Research to P.-A.N. The
6622
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 6619–6623