BT due to the existing weak CHꢀꢀꢀN hydrogen bonds, as
demonstrated by X-ray crystallography.
We are grateful for support from NSFC/China, the Oriental
Scholarship, SRFDP 200802510011, and the Fundamental
Research Funds for the Central Universities (WK1013002).
Notes and references
z Crystallographic data for BN: C28H20N2O2S3, M = 512.64, mono-
clinic, space group P21/n, a = 14.2273(13) A, b = 13.0726(12) A, c =
14.5059(13) A, a = 901, b = 109.866(2)1, g = 901, V = 2537.4(4) A3,
Z = 4, rcalcd = 1.342 gcmꢂ3, T = 296(2)K, 13187 reflections
measured, 5638 unique (Rint = 0.0202) which were used in all
calculations. The final wR(F2) was 0.1724 (all data). R = 0.0450,
Rw= 0.1420, GOF = 1.088. CCDC 843533 contains the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif
Fig. 4 Changes in the 1H NMR spectra of BN in the absence and the
presence of BF3.
thiazole units were observed (Fig. 4). Before adding BF3ꢀEt2O,
the two signals corresponding to the photoactive methyl
hydrogens appear at 2.10 and 2.04 ppm, respectively. Notably,
in contrast to the reference BT (1:1, Fig. S6w), the integration ratio
of the lower- and upper-field signals is 1 : 0.06 (Fig. 4), indicating
that there exists a predominant anti-parallel conformation in
BN,7b,12 which can be further certified by hydrogen bonds of
single crystals and contributes to the relative high conversion
and cyclization quantum yield (Table 1). Upon adding BF3,
the signals of methyl hydrogens in the system of BN were
shifted downfield to 2.60 and 2.50 ppm with an integration
ratio of 1 : 1, respectively, possibly arising from the deshielding
effect of the coordination of BF3. This is consistent with the
proposed mechanism of a ‘‘Key and Lock’’ process of the
photochromic reaction (Fig. 1a). Obviously, the resulting
conformation becomes rigid when the nitrogen in the thiazole
rings are coordinated with BF3.
1 (a) M. Irie, Chem. Rev., 2000, 100, 1685; (b) H. Tian and
Y. L. Feng, J. Mater. Chem., 2008, 18, 1617; (c) S. Yagai and
A. Kitamura, Chem. Soc. Rev., 2008, 37, 1520; (d) F. M. Raymo
and M. Tomasulo, J. Phys. Chem. A, 2005, 109, 7343.
2 (a) R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis,
G. K. Such, L. H. Yee, G. E. Ball and D. A. Lewis, Nat. Mater.,
2005, 4, 249; (b) J. Karnbratt, M. Hammarson, S. M. Li,
¨
H. L. Anderson, B. Albinsson and J. Andreasson, Angew. Chem.,
´
Int. Ed., 2010, 49, 1854; (c) G. Y. Jiang, Y. L. Song, X. F. Guo,
D. Q. Zhang and D. B. Zhu, Adv. Mater., 2008, 20, 2888;
(d) M. Berberich, A. M. Krause, M. Orlandi, F. Scandola and
F. Wurthner, Angew. Chem., Int. Ed., 2008, 47, 6616;
¨
(e) Z. Y. Tian, W. W. Wu and A. D. Q. Li, ChemPhysChem,
2009, 10, 2577; (f) X. F. Guo, D. Q. Zhang, G. X. Zhang and
D. B. Zhu, J. Phys. Chem. B, 2004, 108, 11942.
3 (a) M. Irie, O. Miyatake, K. Uchida and T. Eriguchi, J. Am. Chem.
Soc., 1994, 116, 9894; (b) M. Irie, O. Miyatake and K. Uchida, J. Am.
Chem. Soc., 1992, 114, 8715; (c) S. H. Kawai, S. L. Gilat and
J. M. Lehn, Eur. J. Org. Chem., 1999, (9), 2359; (d) N. P. M. Huck
and B. L. Feringa, J. Chem. Soc., Chem. Commun., 1995, 1095;
(e) X. C. Li, Y. Z. Ma, B. C. Wang and G. A. Li, Org. Lett., 2008,
10, 3639; (f) J. Kulhni and P. Belser, Org. Lett., 2007, 9, 1915.
4 (a) M. Irie, T. Eriguchi, T. Takata and K. Uchida, Tetrahedron,
1997, 53, 12263; (b) M. Irie, O. Miyatake and K. Uchida, J. Am.
Chem. Soc., 1992, 114, 8715; (c) D. Dulic, T. Kudernac, A. Puzys,
B. L. Feringa and B. J. Wees, Adv. Mater., 2007, 19, 2898.
5 (a) J. J. Zhang, W. J. Tan, X. L. Meng and H. Tian, J. Mater.
Chem., 2009, 19, 5726; (b) J. X. Yi, Z. H. Chen, J. H. Xiang and
F. S. Zhang, Langmuir, 2011, 27, 8061; (c) S. Venkataramani,
U. Jana, M. Dommaschk, F. D. Sonnichsen, F. Tuczek and
¨
R. Herges, Science, 2011, 331, 445.
6 (a) S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie,
Nature, 2007, 446, 778; (b) R. Metivier, S. Badre, R. Meallet-Renault,
´ ´ ´
P. Yu, R. B. Pansu and K. Nakatani, J. Phys. Chem. C, 2009,
113, 11916.
7 (a) K. Morinaka, T. Ubukata and Y. Yokoyama, Org. Lett., 2009,
11, 3890; (b) S. Fukumoto, T. Nakashima and T. Kawai, Angew.
Chem., Int. Ed., 2011, 50, 1565.
In order to further unravel the underlying mechanism of the
gated photochromism of BN in response to BF3, the optimized
geometries of all of the isomers and complexes are depicted in
Table S1.w Some critical structural parameters and relative
energies of the complexes are tabulated in Table S2.w Due to
the unsymmetrical nature of the bridging unit of BN, there are
four other isomers located, including the parallel isomers
BN-2-a and BN-2-b and the anti-parallel isomers BN-3-a and
BN-3-b. It clearly shows that all the isomers, except for BN-2-b,
can form complexes with BF2. Energy calculations have excluded
the presence of BN-1_BF2 in the formed complexes. Energies of
the complexes demonstrate that BN-3-a_BF2 and BN-3-b_BF2
are the most stable complexes formed, which are 6.02 and 7.77
kcal molꢂ1 more favorable than BN-1_BF2 and BN-2-a_BF2,
respectively. Furthermore, the significantly large distances
between the reactive carbons in both BN-3-a_BF2 and BN-
3-b_BF2 are around 5.31 A. Therefore, it can be concluded from
the theoretical calculations that the gated photochromism of BN
in response to BF3 can be reasonably ascribed to the formation
of the photochromically deactivated rigid boron-coordination
conformation, such as BN-3-a_BF2 and BN-3-b_BF2.
8 Y. C. Jeong, C. Gao, I. S. Lee, S. I. Yang and K. H. Ahn,
Tetrahedron Lett., 2009, 50, 5288.
´
9 A. Patra, R. Metivier, J. Piard and K. Nakatani, Chem. Commun.,
2010, 46, 6385.
10 S. Kobatake, K. Uchida, E. Tsuchida and M. Irie, Chem. Commun.,
2002, (23), 2804.
In summary, we designed and synthesized a triangle terarylene
with gated photochromic reactivity. The dithiazolethene BN
exhibits an obvious gated reactivity, photochromic activity of
which can be manipulated by a reversible process between
BF3ꢀEt2O and Et3N. Meanwhile, the photocyclization quantum
yield of BN is higher than the corresponding dithienylethenes
11 (a) W. Weber, J. W. Dawson and K. Niedenzu, Inorg. Chem., 1966,
5, 726; (b) H. Yamamoto and K. Maruoka, J. Am. Chem. Soc.,
1981, 103, 6133; (c) T. M. Gilbert, Organometallics, 2000, 19, 1160;
(d) C. H. Lai and P. T. Chou, J. Comput. Chem., 2010, 31,
2258.
12 K. Uchida, Y. Nakayama and M. Irie, Bull. Chem. Soc. Jpn., 1990,
63, 1311.
c
530 Chem. Commun., 2012, 48, 528–530
This journal is The Royal Society of Chemistry 2012