PAPER
Silver(I)-Catalyzed Synthesis of Isoquinolinium-2-yl Amides
3373
1H NMR (300 MHz, CDCl3): d = 10.38 (s, 1 H), 8.37–8.26 (m, 1 H),
8.05–7.94 (m, 3 H), 7.92–7.80 (m, 1 H), 7.71–7.54 (m, 5 H).
Table 3 Boc-Deprotection of Isoquinolinium-2-yl Amides 10a, 10i,
and 10j to 2-Aminoisoquinolinium Trifluoroacetates 13a–c
13C NMR (75 MHz, CDCl3): d = 142.43, 142.39, 135.2, 134.9,
CF3COO
131.3, 131.1, 129.9, 129.53, 129.49, 129.3, 127.4, 126.8, 126.7.
CH2Cl2–TFA
NH2
R2
N
(2:1)
N
MS (ESI): m/z = 221.7 [C15H13N2]+.
N
Boc
r.t., 3 h
R2
10
13
Product
13a
Supporting Information for this article is available online at
are spectral data for all compounds and copies of NMR spectra.
Entry
10
R2
Yield (%)a
1
2
3
10a
10i
10j
Ph
52
57
49
Acknowledgment
3-thienyl
Bu
13b
Support was provided by the Fund for Scientific Research (FWO),
Flanders, and by the Research Fund of the Katholieke Universiteit
Leuven. P.V.A. is grateful to the EMECW (Triple I) for obtaining a
doctoral scholarship.
13c
a Isolated yield.
as part of a complex one-pot/tandem process. A signifi-
cant expansion of the hydrazide substrate scope has been
achieved.
References
(1) (a) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553.
(b) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001,
3, 2973. (c) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org.
Chem. 2002, 67, 3437. (d) Huang, Q.; Larock, R. C.
Tetrahedron Lett. 2002, 43, 3557. (e) Roesch, K. R.;
Larock, R. C. J. Org. Chem. 2002, 67, 86. (f) Dai, G.;
Larock, R. C. Org. Lett. 2002, 4, 193. (g) Dai, G.; Larock,
R. C. J. Org. Chem. 2002, 67, 7042. (h) Dai, G.; Larock, R.
C. J. Org. Chem. 2003, 68, 920.
(2) For a Ag(I)-promoted protocol in which indole acts as a
leaving group (N–N bond cleavage), see: (a)Ghavtadze, N.;
Fröhlich, R.; Würthwein, E.-U. Eur. J. Org. Chem. 2010,
1787. Similarly, N2 acts as a leaving group in the Lewis acid
catalyzed or electrophile-mediated cyclization of 2-alkynyl-
benzyl azides, see: (b) Zhang, H.-P.; Yu, S.-C.; Liang, Y.;
Peng, P.; Tang, B.-X.; Li, J.-H. Synlett 2011, 982.
(c) Zhang, H.-P.; Yang, X.-H.; Peng, P.; Li, J.-H. Synthesis
2011, 1219. (d) Niu, Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang,
H.-L.; Shu, X.-Z.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem.
2009, 74, 2893. (e) Fischer, D.; Tomeba, H.; Pahadi, N. K.;
Patil, N. T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2007, 46,
4764. (f) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N.
T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130,
15720.
1H and 13C NMR spectra were recorded with Bruker Avance 300 in-
struments. The 1H and 13C chemical shifts are reported in parts per
million (ppm) relative to TMS using the residual solvent signal as
the internal reference. Mass spectra were recorded with a Thermo
Finnigan LCQ Advantage apparatus (ESI).
One-Pot Synthesis of Isoquinolinium-2-yl Amides 10; Typical
Procedure
2-(Phenylethynyl)benzaldehyde (11a; 206 mg, 1 mmol) and tert-
butoxycarbonyl hydrazide (12a; 145 mg, 1.1 mmol) were dissolved
in anhydrous MeCN (3.5 mL). The reaction mixture was heated at
80 °C for 5 h in a glass tube with a screw-cap. AgOTf (26 mg, 0.1
mmol) was added and the reaction mixture was degassed and
flushed with argon. After heating at 80 °C for 3 h, the reaction mix-
ture was directly loaded onto a silica gel column and purified by
column chromatography (EtOAc–MeOH, 9:1), to provide iso-
quinolinium-2-yl amide (10a).
tert-Butoxycarbonyl(3-phenylisoquinolinium-2-yl)amide (10a)
Yield: 199 mg (62%).
1H NMR (300 MHz, CDCl3): d = 9.37 (s, 1 H), 8.08–8.01 (m, 1 H),
7.98–7.90 (m, 2 H), 7.89–7.81 (m, 1 H), 7.80–7.71 (m, 1 H), 7.70–
7.63 (m, 2 H), 7.50–7.40 (m, 3 H), 1.38 (s, 9 H).
13C NMR (75 MHz, CDCl3): d = 163.9, 148.3, 148.0, 134.8, 133.5,
129.6, 129.5, 129.4, 128.1, 127.9, 127.5, 126.6, 125.8, 77.3, 28.8.
MS (ESI): m/z = 321.8 [M + H]+.
(3) (a) Ye, Y.; Ding, Q.; Wu, J. Tetrahedron 2008, 64, 1378.
(b) Ding, Q.; Wang, B.; Wu, J. Tetrahedron 2007, 63,
12166. (c) Markina, N. A.; Mancuso, R.; Neuenswander, B.;
Lushington, G. H.; Larock, R. C. ACS Comb. Sci. 2011, 13,
265.
(4) Yeom, H.-S.; Kim, S.; Shin, S. Synlett 2008, 924.
(5) (a) Ding, Q.; Wu, J. Adv. Synth. Catal. 2008, 350, 1850.
(b) Huo, Z.; Tomeba, H.; Yamamoto, Y. Tetrahedron Lett.
2008, 49, 5531.
Boc-Deprotection of Isoquinolinium-2-yl Amides 10 To Give 2-
Aminoisoquinolinium Trifluoroacetates 13; Typical Procedure
Isoquinolinium-2-yl amide (10a; 192 mg, 0.6 mmol) was dissolved
in CH2Cl2 (4 mL) and TFA (2 mL) was added. The reaction mixture
was stirred at r.t. for 3 h and then concentrated under reduced pres-
sure. The residue was diluted with CH2Cl2 and loaded onto a short
pad of silica for flash chromatography (EtOAc–MeOH, 4:1), pro-
viding 2-aminoisoquinolinium trifluoroacetate (13a).
(6) Ding, Q.; Chen, Z.; Yu, X.; Peng, Y.; Wu, J. Tetrahedron
Lett. 2009, 50, 340.
(7) For one-pot/tandem procedures involving intermediates of
types 6 and 7, see: (a) Ding, Q.; Wang, Z.; Wu, J.
Tetrahedron Lett. 2009, 50, 198. (b) Ye, S.; Gao, K.; Wu, J.
Adv. Synth. Catal. 2010, 352, 1746. (c) Ye, S.; Wang, H.;
Wu, J. Eur. J. Org. Chem. 2010, 6436. (d) Chen, Z.; Yu, X.;
Su, M.; Yang, X.; Wu, J. Adv. Synth. Catal. 2009, 351,
2702. (e) Ding, Q.; Wang, Z.; Wu, J. J. Org. Chem. 2009, 74,
921.
2-Amino-3-phenylisoquinolinium Trifluoroacetate (13a)
Yield: 104 mg (52%).
Synthesis 2011, No. 20, 3371–3374 © Thieme Stuttgart · New York