Y. V. Ostapiuk et al. / Tetrahedron Letters 53 (2012) 543–545
545
Figure 1. X-ray crystal structure (ORTEP plot) of 11f.
7. (a) Uto, Y.; Ogata, T.; Harada, J.; Kiyotsuka, Y.; Ueno, Y.; Miyazawa, Y.; Kurata,
H.; Deguchi, T.; Watanabe, N.; Takagi, T.; Wakimoto, S.; Okuyama, R.; Abe, M.;
Kurikawa, N.; Kawamura, S.; Yamato, M.; Osumi, J. Bioorg. Med. Chem. Lett.
2009, 19, 4151–4158; (b) Uto, Y.; Ogata, T.; Kiyotsuka, Y.; Miyazawa, Y.; Ueno,
Y.; Kurata, H.; Deguchi, T.; Yamada, M.; Watanabe, N.; Takagi, T.; Wakimoto, S.;
Okuyama, R.; Konishi, M.; Kurikawa, N.; Kono, K.; Osumi, J. Bioorg. Med. Chem.
Lett. 2009, 19, 4159–4166.
8. Krasavin, M.; Karapetian, R.; Konstantinov, I.; Gezentsvey, Y.; Bukhryakov, K.;
Godovykh, E.; Soldatkina, O.; Lavrovsky, Y.; Sosnov, A. V.; Gakh, A. A. Arch.
Pharm. Chem. Life Sci. 2009, 342, 420–427.
9. Manetti, F.; Falchi, F.; Crespan, E.; Schenone, S.; Maga, G.; Botta, M. Bioorg. Med.
Chem. Lett. 2008, 18, 4328–4331.
10. (a) Obushak, N. D.; Matiichuk, V. S.; Vasylyshin, R. Ya.; Ostapyuk, Yu. V. Russ. J.
Org. Chem. 2004, 40, 383–389 (English translation from Zh. Org. Khim. 2004, 40,
412–417).
by the values of the interatomic distances N3–C4 and C2–N3
[1.379(4) and 1.380(4) Å] as well as C2@N6 [1.292(4) Å] which
are close to the mean values for the single bonds (O@)C–NH
[1.357(2) Å] and NH–C(@N) [1.377(10) Å] as well as the double
bond C@N [1.280(2) Å], respectively, acquired from two structures
containing a 2-imino-1,3-thiazolidin-4-one moiety.14,15
The 1H NMR spectra correlate with the crystallographically ob-
served geometry. The spectra of the compounds 11a–f showed a
signal for the CH2 protons at 3.96–4.20 ppm and a signal for the
NH proton at 11.81–12.15 ppm. It should be noted that the reso-
nance for the proton of the imino group at position 2 of the thiazo-
lidinone ring for compounds 10 would be expected to occur at
ꢀ9 ppm.16
11. Typical procedure for the synthesis of N-(5-benzyl-1,3-thiazol-2-yl)-2-
chloroacetamides 8a–f. Chloroacetyl chloride
7 (0.05 mol) was added
dropwise to a stirred solution of 2-amino-5-(arylmethyl)thiazole 6 (0.05 mol)
and Et3N (7 mL, 0.05 mol) in dry 1,4-dioxane (100 mL) at rt. The resulting
solution was stirred for 1 h and then diluted with H2O. The solid product was
filtered, washed with H2O and dried. Recrystallization from EtOH gave 2-
chloroacetamido-5-(arylmethyl)thiazole 8 as a pale-yellow solid.
In summary, we have synthesized 2-[(5-benzyl-1,3-thiazol-2-
yl)imino]-1,3-thiazolidin-4-ones by spontaneous cyclization/rear-
rangement of the intermediate a-thiocyanatoamides.
12. Typical procedure for the synthesis of compounds 11a–f.
A mixture of 2-
chloroacetamido-5-(arylmethyl)thiazole 8a–f (0.03 mol), KSCN (6.0 g,
0.06 mol) and dry acetone (100 mL) was stirred at room temperature for
20 h and then diluted with H2O. The solid product was filtered, washed with
H2O and dried. Recrystallization from EtOH gave thiazolidinone 11 as a yellow
solid. 2-[5-(4-Chlorophenyl)methyl-1,3-thiazol-2-ylimino]-5-methyl-thiazolidin-
4-one (11f): Yield 70%, mp 176 °C (EtOH); 1H NMR (600 MHz, DMSO-d6):
1.51 (d, 3H, J = 7.2, CH3), 4.10 (s, 2H, CH2), 4.27 (q, 1H, J = 7.2, CH), 7.29 (d, 2H,
J = 8.4, 2,6-C6H4), 7.38 (d, 2H, J = 8.4, 3,5-C6H4), 7.39 (s, 1H, 4-H thiazole), 12.00
(br s, 1H, NH); 13C NMR (150 MHz, DMSO-d6): 18.0 (CH3), 31.7 (CH), 43.8 (CH2),
128.5, 130.2, 131.2, 134.4, 137.3, 139.0, 160.3, 168.5, 177.0; Anal. Calcd for
Acknowledgment
The authors are grateful to the State fund for fundamental
research of Ukraine for the financial support (Project F41.3/008).
References and notes
1. (a) Siddiqui, N.; Arshad, M. F.; Ahsan, W.; Alam, M. S. Int. J. Pharm. Sci. Drug Res.
2009, 1, 136–143; (b) Vinícius, M.; de Souza, N. J. Sulfur Chem. 2005, 26,
429–449.
2. Lesyk, R. B.; Zimenkovsky, B. S. Curr. Org. Chem. 2004, 8, 1547–1577.
3. (a) Singh, S. P.; Parmar, S. S.; Raman, K.; Stenberg, V. I. Chem. Rev. 1981, 81, 175–
203; (b) Metwally, M. A.; Farahat, A. A.; Abdel-Wahab, B. F. J. Sulfur Chem. 2010,
31, 315–349.
4. Newcome, G. R.; Nayak, A. Adv. Heterocycl. Chem. 1979, 25, 93.
5. (a) Vicini, P.; Geronikaki, A.; Anastasia, K.; Incerti, M.; Zani, F. Bioorg. Med. Chem.
2006, 14, 3859–3864; (b) Geronikaki, A.; Eleftheriou, P.; Vicini, P.; Alam, I.;
Dixit, A.; Saxena, A. K. J. Med. Chem. 2008, 51, 5221–5228; (c) c) Vicini, P.;
Geronikaki, A.; Incerti, M.; Zani, F.; Dearden, J.; Hewitt, M. Bioorg. Med. Chem
2008, 16, 3714–3724.
6. (a) Zheng, W.; Degterev, A.; Hsu, E.; Yuan, J.; Yuan, Ch. Bioorg. Med. Chem. Lett.
2008, 18, 4932–4935; (b) Liu, H.-L.; Li, Z.; Anthonsen, T. Molecules 2000, 5,
1055–1061.
C14H12ClN3OS2: C, 49.77; H, 3.58; N, 12.44. Found: C, 49.87; H, 3.52; N, 12.50.
13. Crystallographic data for 11f: Empirical formula: 14H12ClN3OS2, formula
C
weight: 337.84, colorless lath crystals, crystal system: monoclinic, space
group: C2/c, a = 32.0442(18), b = 5.4312(2), c = 18.6559(11) Å, b = 115.152(7)°,
V = 2939.0(3) Å3, Z = 8, Dcalc = 1.527 g/cm3.
A
colorless crystal (EtOH)
-radiation,
(0.25 Â 0.21 Â 0.02 mm) was used to record 26307 (CuK
a
hmax = 75.6°) intensities on a SuperNova diffractometer. The supplementary
crystallographic data have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ (UK), Tel.: (+44) 1223/
336 408, Fax: (+44) 1223/336 033, e-mail: deposit@ccdc.cam.ac.uk, http://
14. Entenmann, G.; Eckle, E.; Stezowski, J. J. Phosphorus Sulfur 1978, 4, 303.
15. Ramachandran, R.; Rani, M.; Kabilan, S. Acta Cryst. 2009, E65, o584.
16. Obushak, N. D.; Matiichuk, V. S.; Ganushchak, N. I. Russ. J. Org. Chem. 1998, 34,
239–244 (English translation from Zh. Org. Khim. 1998, 34, 266–271).