Organometallics
Article
(20) 1H NMR for [(i-Pr-Xantphos)Pd(Ph)(Br)] (CD2Cl2, 25 °C), δ:
1.05 (m, 12H, i-Pr-CH3), 1.3 (m, 12H, i-Pr-CH3), 1.8 (s, 6H,
xanthene-CH3), 2.6 (m, 4H, i-Pr-CH), 7.1 (t, 1H, 4-PdPh), 7.2 (t, 2H,
3-PdPh), 7.4 (dm, 2H, 2-PdPh), 7.5 (tt, J = 7.5 and 0.7 Hz, 2H,
xanthene-CH), 7.55 (m, 2H, xanthene-CH), 7.85 (dd, J = 7.5 and 2.0
Hz, 2H, xanthene-CH). The structure of [(i-Pr-Xantphos)Pd(Ph)
(Br)] in solution strongly depends on the polarity of the medium.
CD2Cl2 solutions of this complex are colorless, displaying a singlet in
the 31P NMR spectra at 34.4 ppm, whereas in benzene and THF, the
complex is bright yellow, resonating at 15.2 and 14.9 ppm,
respectively. The significant difference in the 31P NMR chemical
shifts as well as in color indicates that, in less-polar benzene and THF,
the complex exists as a neutral species [(i-Pr-Xantphos)Pd(Ph)(Br)],
whereas in more polar CD2Cl2, it is ionic, [(i-Pr-Xantphos)
Pd(Ph)]+Br−, with the i-Pr-Xantphos ligand being in a P,O,P-
coordination mode. For neutral and ionic forms of closely related
Xantphos-type complexes, see, for example: (a) Kamer, P. C. J.; Van
Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895.
(b) Zuideveld, M. A.; Swennenhuis, B. H. G.; Boele, M. D. K.; Guari,
Y.; van Strijdonck, G. P. F; Reek, J. N. H.; Kamer, P. C. J.; Goubitz, K.;
Fraanje, J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. Dalton
2002, 2308. (c) Koblenz, T. S.; Dekker, H. L.; De Koster, C. G.; Van
Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun. 2006, 1700.
(21) For reviews, see: (a) Brothers, P. J.; Roper, W. R. Chem. Rev.
1988, 88, 1293. (b) Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
(c) Hughes, R. P. Eur. J. Inorg. Chem. 2009, 4591.
Crespo, P.; Hernando, A.; Litran, R.; Sanchez Lopez, J. C.; Lopez
Cartes, C.; Fernandez, A.; Ramirez, J.; Gonzalez Calbet, J.; Vallet, M.
Phys. Rev. Lett. 2003, 91, 237203. (e) Parolin, T. J.; Salman, Z.;
Chakhalian, J.; Song, Q.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.;
Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Morris, G.
D.; Pearson, M. R.; Saadaoui, H.; Wang, D.; MacFarlane, W. A. Phys.
Rev. Lett. 2007, 98, 047601. (f) Oba, Y.; Shinohara, T.; Oku, T.;
Suzuki, J.-i.; Ohnuma, M.; Sato, T. J. Phys. Soc. Jpn. 2009, 78, 044711.
(g) Oba, Y.; Okamoto, H.; Sato, T.; Shinohara, T.; Suzuki, J.;
Nakamura, T.; Muro, T.; Osawa, H. J. Phys. D 2008, 41, 134024.
(h) Teng, X.; Han, W.-Q.; Ku, W.; Hucker, M. Angew. Chem., Int. Ed.
2008, 47, 2055. (i) Xiao, C.; Ding, H.; Shen, C.; Yang, T.; Hui, C.;
Gao, H.-J. J. Phys. Chem. C 2009, 113, 13466.
(32) (a) Evans, D. F. J. J. Chem. Soc. 1959, 2003. (b) Live, D. H.;
Chan, S. I. Anal. Chem. 1970, 42, 791. (c) Ostfeld, D.; Cohen, I. A. J.
Chem. Educ. 1972, 49, 829. (d) Schubert, E. M. J. Chem. Educ. 1992,
69, 62.
(33) (a) Ananikov, V. P.; Musaev, D. G.; Morokuma, K.
Organometallics 2005, 24, 715. See also (b) Sakaki, S.; Mizoe, N.;
Musashi, Y.; Biswas, B.; Sugimoto, M. J. Phys. Chem. A 1998, 102,
8027.
(34) Calculations also probed the energetics of Pathway B, based on
a sequence of α-F migration, Ph transfer onto the CF2 ligand, and F−
CF2Ph coupling (see Scheme 1). An overall barrier of 26.1 kcal mol−1
was computed, with the highest-lying transition state corresponding to
the Ph transfer step. Thus, calculations suggest that this mechanism
may be competitive with direct reductive elimination; however, we rule
out this process on the basis of the experimental studies carried out in
excess water, which provided no evidence for a difluorocarbene
intermediate. See the Supporting Information for full details.
(35) Anstaett, P.; Schoenebeck, F. Chem. Eur. J. 2011, 17, 12340.
The transition state for CF3−Ph reductive elimination from cis-1
reported in this study exhibits less out-of-plane distortion than in
TS(cis-1 - 3), but was only slightly higher in energy when recomputed
with the B97-D approach used here. In general, we found that the
energy of the transition states and the precise ordering of the different
transition-state structures varied subtly depending on whether
dispersion effects were included in the calculation or not.
(22) (a) Huang, D.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119,
3185. (b) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.;
Caulton, K. G. J. Am. Chem. Soc. 2000, 122, 8916.
(23) (a) Goodman, J.; Grushin, V. V.; Larichev, R. B.; Macgregor, S.
A.; Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2009, 131, 4236.
(b) Goodman, J.; Grushin, V. V.; Larichev, R. B.; Macgregor, S. A.;
Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2010, 132, 12013.
(24) Appleton, T. G.; Hall, J. R.; Mathieson, M. T.; Neale, D. W. J.
Organomet. Chem. 1993, 453, 307.
(25) Grushin, V. V. Chem.Eur. J. 2002, 8, 1006.
(26) Fujita, K.; Yamashita, M.; Puschmann, F.; Martinez Alvarez-
Falcon, M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128,
9044.
(36) Grimme, S. J. Comput. Chem. 2004, 25, 1463.
(27) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 3694.
(28) Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem.
Soc. Rev. 2009, 38, 1099.
(37) (a) Sieffert, N.; Buehl, M. Inorg. Chem. 2009, 48, 4622.
(b) Minenkov, Y.; Occhipinti, G.; Jensen, V. R. J. Phys. Chem. A 2009,
113, 11833. (c) McMullin, C. L.; Jover, J.; Harvey, J. N.; Fey, N.
Dalton Trans. 2010, 39, 10833.
(29) Bakhmutov, V. I. Practical NMR Relaxation for Chemists; Wiley:
Chichester, U.K., 2004.
(38) Fey, N.; Ridgway, B. M.; Jover, J.; McMullin, C. L.; Harvey, J. N.
(30) Unexpectedly, the T1 times for both the cis and the trans
isomers of 1 were longer in the presence of Xantphos: 10.7 vs 4.0 s for
cis-1 and 6.3 vs 3.2 s for trans-1. It is hardly conceivable that Xantphos,
especially in such low amounts, could change dramatically the nature
of the medium, lowering its viscosity, which would result in faster
molecular reorientations of 1. The T1 effect observed could be more
plausibly rationalized by paramagnetic species that are generated from
1 in the absence of Xantphos, but not in its presence. The CF3−Ph
reductive elimination from 1 occurs at as low as room temperature,
albeit slowly (see above). In the presence of extra Xantphos, the
unstable Pd(0) byproduct of this reaction, [(Xantphos)Pd], is
efficiently stabilized in the form of [(Xantphos)2Pd] (eq 1). As a
result, only diamagnetic species are produced in the entire process. In
the absence of extra Xantphos, however, [(Xantphos)Pd] decomposes
(Scheme 2) to give rise to palladium colloids, which, unlike the bulk
metal, exhibit ferromagnetic or near-ferromagnetic behavior.31
Although these ferromagnetic species could not be detected by ESR,
nor (considering their low concentration) by the Evans method,32
their presence in the extra Xantphos-free solutions of 1 provides a
rationale for the shortened relaxation times for both cis-1 and trans-1
(Table 2).
Dalton Trans. 2011, 40, 11184.
(39) Dispersion effectscomputed with BLYP and B3PW91 employed
Grimme’s DFT-D3 setof parameters. See Grimme, S.; Antony, J.;
Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
(40) Considering the small magnitude of the Xantphos effect and the
kobs determination error, the difference between the current (eq 4) and
initial (Figure 7) concentration of Xantphos is ignored. This difference
is even less important for the experiments using Xantphos in 5-, 10-,
and 20-fold excess.
(41) Strictly speaking, our computational results indicate that k3 ≠ 0
(see Figure 5 and text above) and might be comparable to k1 and k5.
The calculations also show, however, that B (4) is 15.8−18.5 kcal
mol−1 higher in energy than A (cis-1) (Figure 4), suggesting that k−2
and k4 are larger than k1, k3, and k5. Therefore, the general kinetic
equation (eq 4) may be simplified for two cases, as shown in the
Supporting Information: (i) k2 and k−4 are comparable to k1, k3, and k5
(eq S1, Supporting Information) and (ii) k2 and k−4 are smaller than
k1, k3, and k5 (eq S2, Supporting Information). Note that eq S2 is
identical with eq 5 (Case 2).
(42) (a) There is another case that is kinetically indistinguishable
from Cases 1 and 2: C does not produce PhCF3 but decomposes via a
different pathway during the reaction (Scheme S3, Supporting
Information). The rate law for this scenario is presented in eq S5
(Supporting Information). This case is implausible, however, because
of the high selectivity of the reaction that translates into the rate
(31) (a) Taniyama, T.; Ohta, E.; Sato, T. Europhys. Lett. 1997, 38,
195. (b) Hori, H.; Teranishi, T.; Nakae, Y.; Seino, Y.; Miyake, M.;
Yamada, S. Phys. Lett. A 1999, 263, 406. (c) Shinohara, T.; Sato, T.;
Taniyama, T. Phys. Rev. Lett. 2003, 91, 197201. (d) Sampedro, B.;
1327
dx.doi.org/10.1021/om200985g | Organometallics 2012, 31, 1315−1328