58
P. Srihari et al. / Tetrahedron Letters 53 (2012) 56–58
Chem Abst. 1996, 457801.; (g) Nonomiya-Tsuji, J.; Kajino, T.; Ono, K.; Ohtomo,
T.; Matsumoto, M.; Shiina, M.; Mihara, M.; Tsuchiya, M.; Matsumoto, K. J. Biol.
Chem. 2003, 278, 18485–18490.
with 2 N HCl underwent one pot MOM and acetonide deprotection
to yield the target molecule paecilomycin E (Scheme 4).
When the spectral and analytical data of our synthetic com-
pound were compared with that of isolated product,8a it was found
that the structure was identical to the reported paecilomycine E,
and surprisingly, the analytical data21 was matching with the data
given to paecilomycin F. As the configuration at C8 and C9 stereo-
8. (a) Xu, L.; He, Z.; Xue, J.; Chen, X.; Wei, X. J. Nat. Prod. 2010, 73, 885–889;
Paecilomycin F was also isolated from culture broth of Cochlioolus lunatus (b)
Shao, C.-L.; Wu, H.-X.; Wang, Ch.-Y.; Liu, Q.-A.; Xu, Y.; Wei, M.-Y.; Qian, P.-Y.;
Gu, Y.-C.; Zheng, C.-J.; She, Z.-G.; Lin, Y.-C. J. Nat. Prod. 2011, 74, 629–633.
9. (a) Srihari, P.; Satyanarayana, K.; Ganganna, B.; Yadav, J. S. J. Org. Chem. 2011,
76, 1922–1925; (b) Yadav, J. S.; Kumaraswamy, B.; Sathish Reddy, A.; Srihari, P.;
Janakiram, R. V.; Shashi, V. K. J. Org. Chem. 2011, 76, 2568–2576; (c) Srihari, P.;
Kumaraswamy, B.; Shankar, P.; Ravishashidhar, V.; Yadav, J. S. Tetrahedron Lett.
2010, 52, 6174–6176; (d) Srihari, P.; Kumaraswamy, B.; Rao, G. M.; Yadav, J. S.
Tetrahedron Asymm. 2010, 21, 106–111; (e) Srihari, P.; Kumaraswamy, B.;
Somaiah, R.; Yadav, J. S. Synthesis 2010, 1039–1045; (f) Srihari, P.; Bhasker, E.
V.; Reddy, A. B.; Yadav, J. S. Tetrahedron Lett. 2009, 50, 2420–2424; (g) Srihari,
P.; Rajendar, G.; Rao, R. S.; Yadav, J. S. Tetrahedron Lett. 2008, 49, 5590–5592.
10. Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 655–659.
11. (a) Kamisuki, S.; Takahashi, S.; Mizushina, Y.; Hanashima, S.; Kuramochi, K.;
Kobayashi, S.; Sakaguchi, K.; Nakata, T.; Sugawara, F. Tetrahedron 2004, 60,
5695–5700; (b) Mitsunobu, O. Synthesis 1981, 1–28.
12. Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585–9595.
13. Onoda, T.; Shirai, R.; Kawai, N.; Iwasaki, S. Tetrahedron 1996, 52, 13327–13338.
14. Gin, M. S.; Moore, J. S. Org. Lett. 2000, 2, 135–138.
15. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480–2482.
16. (a) Muller, S.; Liepold, B.; Roth, G. J.; Bestmann, J. J. Synlett 1996, 521–522; (b)
Callant, P.; D’Haenens, L.; Vandewalle, M. Synth. Commun. 1984, 14, 155–161.
The transformation was also achieved in two steps using Corey Fuchs protocol
yielding the desired product in 67% yield.
centres were derived from L-(+)-diethyl tartarate, the configuration
at these centres are unequivocally established by our synthesis.
In conclusion, the first total synthesis of paecilomycin E has
been achieved. The strategy can be also utilised for generation of
other analogues by either varying the chiral epoxide or esterifica-
tion reaction. Also by varying the allylation conditions, the other
diastereomers can be made accessible. Further studies toward
the total synthesis of other paecilomycins and their analogues
are being currently investigated.
Acknowledgements
B.M. thanks UGC, New Delhi for the financial assistance. P.S.
acknowledges research Grant (P 81-113) from the Human Re-
sources Research Group-New Delhi through the Council of Scien-
tific & Industrial Research (CSIR) Young Scientist Award Scheme.
The authors also thank Dr. J. S. Yadav, Director, IICT for his constant
support and encouragement.
17. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391–394.
18. Chattopadhyay, A.; Dhotare, B. Tetrahedron Asymm. 1998, 9, 2715–2723.
19. The product obtained after allylation was a mixture of diastereomers which
were inseparable and were directly treated with MOMCl to get the
corresponding MOM ether. The products (diastereomers) at this stage were
easily separated by flash chromatography. The percentage of diastereomers
(9:1) was calculated based on the weight of the MOM protected products.
20. (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956; (b)
Fuse, S.; Sugiyama, S.; Takahashi, T. Chem. Asian J. 2010, 5, 2459–2462.
Supplementary data
21. Spectroscopic data for selected products 9. ½a D20
= ꢂ20.25 (c 0.8, CHCl3); IR (neat):
ꢁ
Supplementary data (experimental procedures and analytical
data for all the new compounds) associated with this article can
3433, 3077, 2931, 1641, 1458, 1374, 1248, 1214, 1152, 1101, 1038, 917,
879 cmꢂ1 1H NMR (300 MHz, CDCl3): d 5.91–5.77 (m, 1H), 5.14–5.06 (m, 2H),
;
4.65(q, J = 6.7 Hz, 2H), 3.94–3.88 (m, 1H), 3.84–3.76 (m, 1H), 3.71–3.62 (m, 2H),
3.36 (s, 3H), 2.39–2.34 (m, 2H), 1.62–1.42 (m, 6H), 1.36 (s, 3H), 1.35 (s, 3H),
1.12 (d, J = 6.2 Hz, 3H); 13C NMR (75 MHz, CDCl3): d 134.2, 117.5, 108.4, 96.1,
81.4, 78.4, 77.1, 67.7, 55.7, 39.0, 35.5, 34.1, 27.3, 27.0, 23.3, 22.4; MS (ESI): m/
z = 325 [M+Na]; HRMS (ESI): calcd for C16H30O5Na, 325.1990, found 325.1999.
References and notes
8. ½a 2D0
ꢁ
= +8.5 (c 0.6, CHCl3); IR (neat): 3448, 3168, 2921, 2851, 1647, 1609,
1. (a) Stob, M.; Baldwin, R. S.; Tuite, J.; Andrews, F. N.; Gillette, K. G. Nature 1962,
196, 1318; (b) Winssinger, N.; Barluenga, S. Chem. Commun. 2007, 22–36. and
references cited there in; (c) Hofmann, T.; Altmann, H. H. C. R. Chim. 2008, 11,
1318–1335; (d) Winssinger, N.; Fontaine, J. G.; Barluenga, S. Curr. Top. Med.
Chem. 2009, 9, 1419–1435; (e) Couladouros, E. A.; Mihou, A. P.; Bouzas, E. A.
Org. Lett. 2004, 6, 977–980.
2. (a) Ayer, W. A.; Lee, S. P.; Tsuneda, A.; Hiratsuka, Y. Can. J. Microbiol. 1980, 26,
766–773; (b) Nair, M. S. R.; Carey, S. T. Tetrahedron Lett. 1980, 21, 2011–2012.
3. (a) Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M. J. Org. Chem. 2002, 67,
1561–1566; (b) Isaka, M.; Yangchum, A.; Intamas, S.; Kocharin, K.; Jones, E. B.
G.; Kongsaeree, P.; Prabpai, S. Tetrahedron 2009, 65, 4396–4403; (c) Hellwig, V.;
Mayer-Bartschmid, A.; Muller, H.; Greif, G.; Kleymann, G.; Zitzmann, W.; Tichy,
H.-T.; Stadler, M. J. Nat. Prod. 2003, 66, 829–837.
4. Ayers, S.; Graf, T. N.; Adcock, A. F.; Kroll, D. J.; Matthew, S.; Carcche de Blanco, E.
J.; Shen, Q.; Swanson, S. M.; Wani, M. C.; Pearce, C. J.; Oberlies, N. H. J. Nat. Prod.
2011, 74, 1126–1131.
5. (a) Boettger-Tong, H.; Murthy, L.; Chiappetta, C.; Kirkland, J. L.; Goodwin, B.;
Adlercreutz, H.; Stancel, G. M.; Makela, S. Environ. Health Perspect. 1998, 106,
369–373; (b) Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Mordecai, D.
Endocrinoloy 1979, 105, 33–40.
1573, 1385, 1257, 1209, 1159, 1036, 916, 770 cmꢂ1
;
1H NMR (300 MHz, CDCl3):
d 11.73 (s, 1H), 7.25 (dd, J = 17.3, 11.3 Hz, 1H), 6.42 (d, J = 2.2 Hz, 1H), 6.36 (d,
J = 2.2 Hz, 1H), 5.90–5.76 (m, 1H), 5.37 (dd, J = 17.3, 2.2 Hz,1H), 5.22–5.13 (m,
2H), 5.08–5.05 (m, 1H), 4.63 (q, J = 6.7 Hz, 2H), 3.91–3.84 (m, 1H), 3.82 (s, 3H),
3.70–3.58 (m, 2H), 3.34–3.33 (m, 1H), 3.31 (s, 3H), 2,44–2.28 (m, 2H), 1.85–
1.43 (m, 6H), 1.37 (d, J = 6.7 Hz, 3H), 1.35 (s, 3H), 1.34 (s, 3H); 13C NMR
(75 MHz, CDCl3): d 170.7, 164.9, 163.8, 143.6, 138.5, 134.1 (2C), 117.5, 115.2,
108.4, 108.1, 100.0, 96.0, 81.4, 78.4, 77.1, 72.5, 55.7, 55.3, 35.7, 35.6, 34.1, 27.3,
26.5, 21.9, 19.9; MS (ESI): m/z = 501 [M+Na]; HRMS (ESI): calcd for C26H38O8Na
501.2464, found 501.2452. 21. mp 119 °C; ½a D20
= ꢂ131.49 (c 1.16, CHCl3); IR
ꢁ
(KBr): 2982, 2933, 1647, 1608, 1574, 1445, 1376, 1357, 1319, 1257, 1211,
1159, 1103, 1034, 967, 864, 757 cmꢂ1 1H NMR (300 MHz, CDCl3): d 11.92 (s,
;
1H), 7.15 (dd, J = 15.8, 2.2 Hz, 1H), 6.40 (s, 2H), 5.80–5.70 (m, 1H), 5.17–5.06
(m,1H), 4.79 (q, J = 6.7 Hz, 2H), 4.30–4.26 (m, 1H), 4.16–4.08 (m, 1H), 3.87 (dd,
J = 8.3, 1.5 Hz, 1H), 3.82 (s, 3H), 3.42 (s, 3H), 2.78–2.69 (m, 1H), 2.39–2.26 (m,
1H), 1.84–1.53 (m, 6H), 1.42 (d, J = 6.0 Hz, 3H), 1.38 (s, 3H), 1.32 (s, 3H); 13C
NMR (75 MHz, CDCl3): d 171.1, 165.2, 163.8, 142.6, 133.9, 128.4, 123.5, 108.6,
100.2, 96.9, 78.9, 74.9, 74.1, 73.2, 55.5, 55.3, 36.5, 35.5, 32.5, 27.2, 26.8, 20.1,
18.9; MS (ESI): m/z = 473 [M+Na]; HRMS (ESI): calcd for C24H34O8Na 473.2151,
found 473.2151. Paecilomycine E 5. mp 168 °C; ½a D20
= ꢂ93.83 (c 0.12, MeOH);
ꢁ
6. Dong, J.; Zhu, Y.; Song, H.; Li, R.; He, H.; Liu, H.; Huang, R.; Zhou, Y.; Wang, L.;
Cao, Y.; Zhang, K. J. Chem. Ecol. 2007, 33, 1115–1126.
IR (KBr): 3448, 2926, 1616, 1595, 1508, 1367, 1264, 1153, 1087, 1012, 964, 778,
7. (a) Abid, E. S.; Ouanes, Z.; Hassen, W.; Baudrimont, I.; Creppy, E.; Bacha, H.
Toxicol. In Vitro 2004, 18, 467–474; (b) Furstner, A.; Langemann, K. J. Am. Chem.
Soc. 1997, 119, 9130–9136; (c) Kwon, H. J.; Yoshida, M.; Abe, K.; Horinouchi, S.;
Beppu, T. Biosci. Biotechnol. Biochem. 1992, 56, 538–539; (d) Chanmugam, P.;
Feng, L.; Liou, S.; Jang, B. C.; Boudreau, M.; Yu, G.; Lee, J. H.; Kwon, H. J.; Beppu,
T.; Yoshida, M.; Xia, Y.; Wilson, C. B.; Hwang, D. J. Biol. Chem. 1995, 270, 5418–
5426; (e) Takehara, K.; Sato, S.; Kobayashi, T.; Maeda, T. Biochem. Biophys. Res.
Commun. 1999, 257, 19–23; (f) Giese, N. A.; Lokker, N. Int. Pat. WO9613259;
691 cmꢂ1 1H NMR (500 MHz, CDCl3): d 12.22 (s, 1H), 7.12 (d, J = 14.8 Hz, 1H),
;
6.38 (s, 2H), 5.70–5.64 (m, 1H), 5.00–4.90 (m, 1H), 4.19–4.13 (m, 2H), 3.79 (s,
3H), 3.52 (s, 1H), 2.69–2.66 (m, 1H), 2.52–2.44 (m, 1H), 1.96–1.78 (m, 2H),
1.64–1.41 (m, 2H), 1.38 (d, J = 5.9 Hz, 3H), 1.34–1.28 (m, 2H); 13C NMR
(75 MHz, CDCl3): d 171.4, 165.9, 164.0, 142.9, 134.1, 127.3, 109.0, 103.3, 100.2,
76.1, 73.7, 68.8, 66.9, 55.4, 38.7, 35.2, 30.9, 21.2, 20.9; MS (ESI): m/z = 389
[M+Na]; HRMS (ESI): calcd for C19H26O7Na 389.1576, found 389.1591.