Our interest in this area was driven by previous studies
on enamide7 and heterocycle synthesis in our laboratory,8
and a desire to develop approaches using both CꢀN bond
couplings and metal catalyzed heterocycle synthesis for the
construction of novel polyheterocyclic core structures. The
ynehydrazide functional group attracted our interest since,
despite the utility and popularity of ynamides, the related
dinitrogen ynehydrazine or ynehydrazide alkynes are vir-
tually unknown. The overall significance of hydrazine and
hydrazide functional groups in drug discovery research,9
the frequent use of hydrazine derivatives10 and alkynes11 as
precursors to heterocycles, and the application of NꢀN
bond cleavage to access amines/amides12 suggested that
ynehydrazides could serve as intriguing reagents for or-
ganic synthesis.
There are a few reports on the synthesis of trimethyl
substituted ynehydrazines,13 but these examples are not
amenable to providing differentially substituted hydrazine
derived functional groups (e.g., dinitrogen containing
heterocycles), and there exists only one example of an
ynehydrazide.14 We now report the development of
a general route to ynehydrazides and provide an
exploration of their chemistry, including their utility
for the selective synthesis of heterocyclic structures by
exploiting both alkyne and hydrazide functional groups
in ring-forming reactions. These studies demonstrate
that ynehydrazides are complementary reagents to
ynamides.
Based on the success of copper-promoted CspꢀN cross-
coupling approaches to generate ynamides,2 a similar strat-
egy was initially envisaged for ynehydrazide synthesis via
coupling of a suitably triprotected hydrazide with alkynyl
bromides (Scheme 1). Hydrazide 1 was chosen as a model
substrate since it could be readily generated from phthalic
anhydride in gram-scale quantities;15 however, under typical
copper-catalyzed or mediated ynamide synthesis condi-
tions, low yields of the desired ynehydrazides 2 were
observed (Scheme 1).
Despite their potential value as functionalized hydrazine
and heterocycle precursors, and as masked ynamides, a
general approach to ynehydrazide synthesis is not known.
(6) (a) Alayrac, C.; Schollmeyer, D.; Witulski, B. Chem. Commun.
2009, 1464–1466. (b) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J.
Tetrahedron 2006, 62, 3882–3895. (c) Nissen, F.; Richard, V.; Alayrac,
C.; Witulski, B. Chem. Commun. 2011, 47, 6656–6658. (d) Nissen, F.;
Detert, H. Eur. J. Org. Chem. 2011, 2845–2853. (e) Zhang, Y.; Hsung,
R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7,
1047–1050.
(7) (a) Bolshan, Y.; Batey, R. A. Tetrahedron 2010, 66, 5283–5294. (b)
Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109–2112.
(8) Recent examples: (a) Joyce, L. L.; Batey, R. A. Org. Lett. 2009, 11,
2792–2795. (b) Viirre, R. D.; Evindar, G.; Batey, R. A. J. Org. Chem.
2008, 73, 3452–3459.
Scheme 1. A Copper-Promoted Hydrazide CspꢀN Cross-
Coupling Approach to Ynehydrazides
(9) For reviews on hydrazines and derivatives, see: (a) Schmidt,
E. W., Ed. Hydrazine and its Derivatives: Preparation, Properties,
Applications, 2nd ed.; John Wiley & Sons: New York, 2001. (b) Rademacher,
P. Sci. Synth. 2009, 40b, 1133–1210. (c) Rollas, S.; Kucukguzel, S. G.
Molecules 2007, 12, 1910–1939. (d) Hassan, A. A.; Shawky, A. M.
J. Heterocycl. Chem. 2010, 47, 745–763. (e) Ragnarsson, U. Chem.
Soc. Rev. 2001, 30, 205–213.
(10) For reviews on the use of hydrazines in heterocycle synthesis, see:
(a) Moulin, A.; Bibian, M.; Blayo, A.-L.; Habnouni, S. E.; Martinez, J.;
Fehrentz, J. A. Chem. Rev. 2010, 110, 1809–1827. (b) Humphrey, G. R.;
Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911. (c) Ganem, B. Acc.
Chem. Res. 2009, 42, 463–472. (d) Hughes, D. L. Org. Prep. Proced. Int.
1993, 25, 607–632. (e) Eicher, T.; Hauptmann, S.; Spiecher, A., Eds. The
Chemistry of Heterocycles, 2nd ed.; John Wiley & Sons: New York,
2004. (f) Fustero, S.; Simon-Fuentes, A. Org. Prep. Proced. Int. 2009, 41,
253–290. (g) Yet, L. Prog. Heterocycl. Chem. 2008, 19, 208–241.
(h) Withbroe, G. J.; Singer, R. A.; Sieser, J. E. Org. Process Res. Dev.
2008, 12, 480–489.
(11) Selected reviews: (a) Padwa, A., Ed. 1,3-Dipolar Cycloaddition
Chemistry; Pergamon Press: Oxford, 1984. (b) Padwa, A., Pearson, W. H.,
Eds. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry
toward Heterocycles and Natural Products; John Wiley & Sons: New
York, 2002. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644–4680.
(d) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911. (e)
Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873–2920. (f) Zeni, G.;
Larock, R. C. Chem. Rev. 2004, 104, 2285–2309.
(12) Selected representative examples of hydrazine derivatives as
protected amines via NꢀN bond cleavage: (a) Eliminative cleavage:
Magnus, P.; Garizi, N.; Siebert, K. A.; Ornholt, A. Org. Lett. 2009, 11,
5646–5648. (b) Raney, Ni; Sinha, P.; Kofink, C. C.; Knochel, P Org.
Lett. 2006, 8, 3741–3744. (c) Oxidative cleavage: Fernandez, R.; Ferrete,
A.; Llera, J. M.; Magriz, A.; Martin-Zamora, E.; Diez, E.; Lassaletta,
J. M. Chem.;Eur. J. 2004, 10, 737–745. (d) Li/NH3: Brimble, M. A.;
Heathcock, C. H. J. Org. Chem. 1993, 58, 5261–5263. (e) SmI2: Ding, H.;
Friestad, G. K. Org. Lett. 2004, 6, 637–640 and references therein. (f) Pd/
C: Kim, Y. H.; Choi, J. Y. Tetrahedron Lett. 1996, 37, 5543–5546. (g)
Photochemical cleavage: Lebrun, S.; Couture, A.; Deniau, E.; Grand-
claudon, P. Synlett 2009, 2621–2624. (h) Zn/HOAc: Leblanc, Y.;
Zamboni, R.; Bernstein, M. A. J. Org. Chem. 1991, 56, 1971–1972.
(13) (a) De Croutte, H.; Janousek, Z.; Pongo, L.; Mere, R.; Viehe,
H. G. Bull. Soc. Chim. Fr. 1990, 127, 745. (b) Loffler, A.; Himbert, G.
Synthesis 1994, 383–386. (c) Himbert, G.; NaBhan, H.; Gerulat, O.
Synthesis 1997, 293–294.
An alternative approach was therefore considered
through which formation of the CspꢀN bond could be
achieved via addition of terminal acetylide nucleophiles to
readily available diazodicarboxylates (Scheme 2). Despite
the known examples of organometallic addition to these
electrophilic nitrogen sources,16 reaction of alkynyl nu-
cleophiles across the NdN bond of these species has not
been reported as a strategy to generate CspꢀN bonds. Such
an approach is a potentially attractive one given its gen-
erality, the availability of the reagents, and the stabilizing
(14) Denonne, F.; Seiler, P.; Diederich, F. Helv. Chim. Acta 2003, 86,
3096–3117.
(15) Brosse, N.; Pinto, M.-F.; Jamart-Gregoire, B. Eur. J. Org. Chem.
2003, 4757–4764.
(16) (a) Kkisseljova, K.; Tsubrik, O.; Sillard, R.; Maeorg, S.;
Maeorg, U. Org. Lett. 2006, 8, 43–45. (b) Uemura, T.; Chatami, N.
J. Org. Chem. 2005, 70, 8631–8634. (c) Beveridge, R. E.; Fernando, D.;
Gerstenberger, B. S. Tetrahedron Lett. 2010, 51, 5005–5008. (d) Demers,
J. P.; Klaubert, D. H. Tetrahedron Lett. 1987, 28, 4933–4934. (e)
Gerstenberger, B. S.; Rauckhorst, M. R.; Starr, J. T. Org. Lett. 2009,
11, 2097–2100. (f) Velarde-Ortiz, R.; Guijarro, A.; Rieke, R. D. Tetra-
hedron Lett. 1998, 39, 9157–9160. (g) Macklin, T. K.; Snieckus, V. Org.
Lett. 2005, 7, 2519–2522.
Org. Lett., Vol. 14, No. 2, 2012
541