Table 1 PL data of frameworks 1 and 2 at 10, 77 and 298 K
on the fluorescent C3N6 core. The two frameworks both
display (4,4)-connected 2D networks with fascinating architectures.
In particular, they show bright blue fluorescence both under
ambient and freezing conditions, and drastic fluorescence
enhancement when the temperature is lowered.
lema, fwhmb/nm
10 K 77 K
Ffc (%)
Compd
td/ns
298 K
10 K 77 K 298 K
1
2
424, 70 424, 70 432, 72 74.5
431, 76 432, 75 432, 74 25.8
74.0
25.4
40.3
13.7
5.49
6.47
This work was supported by grants from the 973 Program
(2007CB815301), the National Science Foundation of China
(21073192, 20733003, 20801055 and 20871114), the Science
Foundation of CAS (KJCX2-YW-H20) and of Fujian Province
(2009HZ0006-1 and 2006L2005).
a
b
lem = emission band. fwhm = full width at half-maximum.
c
d
Ff = quantum yield. t = lifetime at 298 K.
Notes and references
z Crystal data for 1: CdC29H33N7O8, Mr = 719.77, monoclinic, space
group P21/c, a = 12.943(4) A, b = 12.329(3) A, c = 23.867(5) A, b =
108.881(12)1, V = 3603.6(16) A3, Z = 4, T = 293(2) K, rcalcd
=
1.327 g cmꢁ3, R1 = 0.0522 and wR2 = 0.1645 for 27 237 reflections
collected, 6911 observed reflections (I 4 2s(I)) of 7817 (Rint = 0.0346)
unique reflections and 381 parameters, GooF = 0.975. Crystal data
for 2: CdC29H31N7O7, Mr = 702.01, monoclinic, space group C2/c,
a = 29.28(2) A, b = 14.524(10) A, c = 20.084(15) A, b =
115.414(11)1, V = 7714(10) A3, Z = 8, T = 293(2) K, rcalcd
=
1.209 g cmꢁ3, R1 = 0.0758 and wR2 = 0.2071 for 25 354 reflections
collected, 5749 observed reflections (I 4 2s(I)) of 8737 (Rint = 0.0666)
unique reflections and 393 parameters, GooF = 1.104.
1 (a) S. V. Eliseeva and J. C. G. Bunzli, Chem. Soc. Rev., 2010,
39, 189; (b) Z.-G. Xie, L.-Q. Ma, K. E. deKrafft, A. Jin and
W.-B. Lin, J. Am. Chem. Soc., 2010, 132, 922; (c) K. Binnemans,
Chem. Rev., 2009, 109, 4283.
2 (a) K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa, J. T. A. Jones,
Y. Z. Khimyak, D. Bradshaw and M. J. Rosseinsky, J. Am. Chem.
Soc., 2010, 132, 4119; (b) H.-L. Guo, Y.-Z. Zhu, S.-L. Qiu,
J. A. Lercher and H.-J. Zhang, Adv. Mater., 2010, 22, 4190;
(c) N.-F. Zheng, X.-H. Bu, B. Wang and P.-Y. Feng, Science,
2002, 298, 2366.
3 (a) K. A. White, D. A. Chengelis, K. A. Gogick, J. Stehman,
N. L. Rosi and S. Petoud, J. Am. Chem. Soc., 2009, 131, 18069;
(b) A. R. Ramya, M. L. P. Reddy, A. H. Cowley and
K. V. Vasudevan, Inorg. Chem., 2010, 49, 2407.
4 (a) D. Sun, D.-F. Wang, X.-G. Han, N. Zhang, R.-B. Huang and
L.-S. Zheng, Chem. Commun., 2011, 47, 746; (b) C. A. Bauer,
T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu,
B. A. Simmons and M. D. Allendorf, J. Am. Chem. Soc., 2007,
129, 7136.
Fig. 5 Relative emission spectra of framework 2 with the variation of
its fluorescent quantum yields collected under excitation at 313 nm in
the solid state at 77 and 298 K. Inset: fluorescent image of the bright
blue luminescing framework 2 at 298 K.
emission response sharply rises to Ff = 74.0%, suggesting its
high sensitivity to temperature. Upon further cooling to 10 K, the
intensity and fwhm of 1 show no essential change compared with
those at 77 K, which indicates that the total intensity of 1
enhances continuously with decreasing temperature up to a
maximum at a certain temperature above 77 K. Irradiation of
framework 2 at 313 nm results in a similar emission at lem = 432 nm
with an absolute quantum yield of 13.7%. When measurement
temperature is reduced to 77 K, the quantum yield mounts up to
25.4% while no shift is observed (Fig. 5).
5 (a) E. Y. Lee, S. Y. Jang and M. P. Suh, J. Am. Chem. Soc., 2005,
127, 6374; (b) X.-H. Jin, J.-K. Sun, L.-X. Cai and J. Zhang, Chem.
Commun., 2011, 47, 2667.
The emission features of 1 and 2 closely match to that of the
fluorophore ligand (Fig. S7, ESIw), indicating the metal-
perturbed intraligand charge transfers. Thus, the intense fluores-
cence of the two frameworks should be mainly contributed from
the well planar and p-conjugated C3N6 cores of ligands. Till
now, few blue luminescent MOFs exhibiting high quantum yields
have been reported.2a,11 Temperature-dependence of emission
intensity has been observed for the luminescent spectra of each
framework studied herein. Cold conditions should be favorable
for the rigidity of ligands, thereby the radiationless decay of the
intraligand (pꢀ ꢀ ꢀp*) excited state could be reduced to some extent
and the increase of the quantum yields should be observed
eventually by lowering the temperature. So far, fluorescent
intensity modulation has been encountered in some MOFs
containing d10 metals,12 while the investigations of the very
strong fluorescent MOFs exhibiting tunable emission intensity
with temperature have been rarely studied.7c,12a
6 (a) A. C. Larson and D. T. Cromer, J. Chem. Phys., 1974, 60, 185;
(b) D. T. Cromer and A. C. Larson, J. Chem. Phys., 1976, 65, 336.
7 (a) Q.-L. Zhu, T.-L. Sheng, R.-B. Fu, S.-M. Hu, L. Chen,
C.-J. Shen, X. Ma and X.-T. Wu, Chem.–Eur. J., 2011, 17, 3358;
(b) Q.-L. Zhu, T.-L. Sheng, R.-B. Fu, S.-M. Hu, J.-S. Chen,
S.-C. Xiang, C.-J. Shen and X.-T. Wu, Cryst. Growth Des., 2009,
9, 5128; (c) Q.-L. Zhu, T.-L. Sheng, C.-H. Tan, S.-M. Hu, R.-B. Fu
and X.-T. Wu, Inorg. Chem., 2011, 50, 7618.
8 B. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe and O. M. Yaghi,
Science, 2001, 291, 1021.
9 (a) L. R. MacGillivray, R. H. Groeneman and J. L. Atwood,
J. Am. Chem. Soc., 1998, 120, 2676; (b) B. D. Wagner,
G. J. McManus, B. Moulton and M. J. Zaworotko, Chem. Commun.,
2002, 2176.
10 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
11 (a) Z.-F. Chen, R.-G. Xiong, J. Zhang, X.-T. Chen, Z.-L. Xue and
X.-Z. You, Inorg. Chem., 2001, 40, 4075; (b) C. A. Bauer,
T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu,
B. A. Simmons and M. D. Allendorf, J. Am. Chem. Soc., 2007,
129, 7136.
12 (a) Q.-R. Fang, G.-S. Zhu, Z. Jin, Y.-Y. Ji, J.-W. Ye, M. Xue,
H. Yang, Y. Wang and S.-L. Qiu, Angew. Chem., Int. Ed., 2007,
46, 6638; (b) H. Kitagawa, Y. Ozawa and K. Toriumi, Chem.
Commun., 2010, 46, 6302.
In summary, two novel microporous MOFs have been
hydrothermally synthesized from a fluorophore ligand based
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 531–533 533