c = 15.2089(16) A, U = 1594.8(3) A3, T = 298(2) K, space group
%
P1, Z = 2, 8283 reflections measured, 5520 unique (Rint = 0.1165) which
were used in all calculations. The final wR(F2) was 0.2184 (all data).
1 D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev., 2003,
103, 893–930.
2 (a) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873–2920;
(b) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106,
2875–2911.
3 (a) K. Alex, A. Tillack, N. Schwarz and M. Beller, Angew. Chem.,
Int. Ed., 2008, 47, 2304–2307.
4 (a) J. T. Kuethe, A. Wong and I. W. Davies, J. Org. Chem., 2004,
69, 7752–7754; (b) J. L. Rutherford, M. P. Rainka and
S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 15168–15169.
5 (a) C. M. Coleman and D. F. O’Shea, J. Am. Chem. Soc., 2003,
125, 4054–4055; (b) J. R. Dunetz and R. L. Danheiser, J. Am.
Chem. Soc., 2005, 127, 5776–5777; (c) A. Fayol, Y.-Q. Fang and
M. Lautens, Org. Lett., 2006, 8, 4203–4206.
Scheme 3
6 S.-L. Cui, J. Wang and Y.-G. Wang, J. Am. Chem. Soc., 2008, 130,
13526–13527.
7 (a) J. Barluenga, M. Trincado, E. Rubio and J. M. Gonzalez,
Angew. Chem., Int. Ed., 2003, 42, 2406–2409.
can make the present multi-component domino reaction to
occur rapidly and efficiently, while normal heating diminished
both yield and speed.
8 (a) J. Barluenga, F. Rodriguez and F. J. Fananas, Chem.–Asian J.,
2009, 4, 1036–1048; (b) R. Bernini, G. Fabrizi, A. Sferrazza and
S. Cacchi, Angew. Chem., Int. Ed., 2009, 48, 8078–8081.
9 (a) M. S. Chen, N. Prabagaran, N. A. Labenz and M. C. White,
J. Am. Chem. Soc., 2005, 127, 6970–6971; (b) J. H. Delcamp and
M. C. White, J. Am. Chem. Soc., 2006, 128, 15076–15077;
(c) K. J. Fraunhoffer, D. A. Bachovchin and M. C. White, Org.
Lett., 2005, 7, 223–226; (d) K. J. Fraunhoffer, N. Prabagaran,
L. E. Sirois and M. C. White, J. Am. Chem. Soc., 2006, 128,
9032–9033.
Complete regioselectivity and excellent yields (particularly
for multicomponent reactions) were achieved for all cases that
were examined. Furthermore, the reaction occurred at a very fast
speed; in fact, all cases can be finished within 15–30 minutes.
Water is nearly a sole by-product, which makes work-up
convenient. In most cases, the products can precipitate out
after cold water was poured into the reaction mixture. The
continuing work on this reaction will be focused on the
development of its asymmetric version in our lab.
10 For representative examples of sp3 C–H bonds functionalization,
see: (a) T. A. Dwight, N. R. Rue, D. Charyk, R. Josselyn and
B. DeBoef, Org. Lett., 2007, 9, 3137–3139; (b) Z. Li, L. Cao and
C.-J. Li, Angew. Chem., Int. Ed., 2007, 46, 6505–6507;
(c) Y. H. Zhang and C. J. Li, Angew. Chem., Int. Ed., 2006, 45,
1949–1952.
The mechanism of this domino reaction is proposed in
Scheme 3. An initial condensation generated imine-isomeric
enamines A, which successively underwent intramolecular
cyclization to give hydroindoles B. The key step of a diver-
gence in reaction paths depends on the aromatization of
hydroindoles B. With two methyl groups on the 5-position
of cyclohex-2-enones, the 6-position of the hydroindoles B
was activated to an electrophilic center and coupled with
carboxylic acid, leading to multifunctionalized indoles 4. The
hydroindoles B without methyl groups (R1 = H) were easily
converted into the aromatic indoles D with a nucleophilic
center at the 3-position, which through intermolecular coupling
reaction with activated hydroindoles B resulted in the final
polysubstituted bis-indoles.
11 For organocatalysis, see: (a) Asymmetric Organocatalysis, ed.
A. Berkessel and H. Groger, Wiley-VCH, Weinheim, Germany,
2005; (b) Acc. Chem. Res. 2004, 37, 8, special issue; (c) B. List, Synlett,
2001, 1675–1686; (d) B. List, Tetrahedron, 2002, 58, 5573–5590.
12 (a) B. A. Arndtsen, R. G. Bergman, T. A. Mobley and
T. H. Peterson, Acc. Chem. Res., 1995, 28, 154–162; (b) N. Chatani,
T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi and S. Murai, J. Am.
Chem. Soc., 2001, 123, 10935–10941; (c) H. Y. Chen, S. Schlecht,
T. C. Semple and J. F. Hartwig, Science, 2000, 287, 1995–1997;
(d) R. H. Crabtree, J. Organomet. Chem., 2004, 689, 4083–4091.
13 (a) N. Winterton, Green Chem., 2001, 3, G73–G75;
(b) Y. H. Zhang and C. J. Li, J. Am. Chem. Soc., 2006, 128,
4242–4243; (c) P. T. Anastas and J. C. Warner, Green Chemistry
Theory and Practice, Oxford University Press, New York, 1998.
14 (a) B. Jiang, C. Li, F. Shi, S.-J. Tu, P. Kaur, W. Wever and G. Li,
J. Org. Chem., 2010, 75, 2962–2965; (b) B. Jiang, S.-J. Tu, P. Kaur,
W. Wever and G. Li, J. Am. Chem. Soc., 2009, 131, 11660–11661;
(c) B. Jiang, X. Wang, F. Shi, S.-J. Tu, T. Ai, A. Ballew and G. Li,
J. Org. Chem., 2009, 74, 9486–9489; (d) G. Li, H. X. Wei,
S. H. Kim and M. D. Carducci, Angew. Chem., Int. Ed., 2001,
40, 4277–4280; (e) N. Ma, B. Jiang, G. Zhang, S.-J. Tu, W. Wever
and G. Li, Green Chem., 2010, 12, 1357–1361.
15 For domino reactions and atom economic synthesis, see ref. 15 and
16: (a) L. F. Tietze, G. Brasche and K. M. Gericke, Domino
Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006;
(b) L. F. Tietze, C. C. Brazel, S. Hoelsken, J. Magull and
A. Ringe, Angew. Chem., Int. Ed., 2008, 47, 5246–5249;
(c) B. M. Trost, Science, 1991, 254, 1471–1477; (d) A. Padwa,
Chem. Soc. Rev., 2009, 38, 3072–3081; (e) A. Padwa and S. K. Bur,
Tetrahedron, 2007, 63, 5341–5378.
16 (a) Y. Huang, A. M. Walji, C. H. Larsen and D. W. C. MacMillan,
J. Am. Chem. Soc., 2005, 127, 15051–15053; (b) M. Lu, D. Zhu,
Y. Lu, Y. Hou, B. Tan and G. Zhong, Angew. Chem., Int. Ed.,
2008, 47, 10187–10191; (c) S. A. Snyder, S. P. Breazzano,
A. G. Ross, Y. Lin and A. L. Zografos, J. Am. Chem. Soc.,
2009, 131, 1753–1765; (d) J. W. Yang, M. T. H. Fonseca and
B. List, J. Am. Chem. Soc., 2005, 127, 15036–15037.
In conclusion, a novel multicomponent domino reaction for the
divergent synthesis of polyfunctionalized indoles and bis-indoles
has been discovered. The reaction is easy to perform simply by
mixing common reactants under microwave irradiation. The
reaction is very fast and can be finished within 15–30 min with
water as the major byproduct, making workup convenient.
We are grateful for financial support from the NSFC
(No. 20928001, 21072163, 21002083, and 21102124), and Sci.
Foundation in Interdisciplinary Major Res. Project of XZNU
(No. 09XKXK01), PADA of Jiangsu Higher Education
Institutions, Robert A. Welch Foundation (D-1361) and
NIH (R21DA031860-01).
Notes and references
z Crystal data for 4a: C25H25NO3, Mr = 387.46, monoclinic, a =
8.6760(8) A, b = 12.8793(13) A, c = 9.4794(11) A, U = 1045.73(19) A3,
T = 298(2) K, space group P21, Z = 2, 5349 reflections measured,
1936 unique (Rint = 0.0428) which were used in all calculations. The
final wR(F2) was 0.0638 (all data). Crystal data for 5a: C42H34N2O2,
Mr = 598.71, triclinic, a = 10.0878(13) A, b = 11.1881(13) A,
c
810 Chem. Commun., 2012, 48, 808–810
This journal is The Royal Society of Chemistry 2012