S. Okada, K. Yamada / Journal of Molecular Structure 1037 (2013) 256–263
263
[9] L. Wang, Q. Chen, G. Pan, L. Wan, S. Zhang, X. Zhan, B.H. Northrop, P.J. Stang, J.
Am. Chem. Soc. 130 (2008) 13433.
[10] W. Schroth, E. Hintzsche, M. Felicetti, R. Spitzner, J. Sieler, R. Kempe, Angew.
Chem. Int. Ed. 33 (1994) 739.
[11] B. Yina, C. Jianga, Y. Wanga, M. Laa, P. Liua, W. Deng, Synth. Met. 160 (2010)
432.
[12] O.H. Omar, F. Babudri, G.M. Farinola, F. Naso, Tetrahedron 67 (2011) 486.
[13] W. Porzio, S. Destri, U. Giovanella, M. Pasini, L. Marin, M.D. Iosip, M. Campione,
Thin Solid Films 515 (2007) 7318.
[14] P. Liu, X. Wang, Y. Zhang, X. Zhou, W. Deng, Synth. Met. 155 (2005) 565.
[15] Y.M. Sun, Y.Q. Ma, Y.Q. Liu, Y.Y. Lin, Z.Y. Wang, Y. Wang, C.A. Di, K. Xiao, X.M.
Chen, W.F. Qiu, B. Zhang, G. Yu, W.P. Hu, D.B. Zhu, Adv. Funct. Mater. 16 (2006)
426.
[16] P. Baeuerle, U. Segelbacher, A. Maier, M. Mehring, J. Am. Chem. Soc. 115 (1993)
10217.
[17] T. Nishinaga, A. Wakamiya, D. Yamazaki, K. Komatsu, J. Am. Chem. Soc. 126
(2004) 3163.
[18] A. Wakamiya, D. Yamazaki, T. Nishinaga, T. Kitagawa, K. Komatsu, J. Org. Chem.
68 (2003) 8305.
[19] Z. Xu, D. Fichou, G. Horowitz, F. Garnier, J. Electroanal. Chem. 267 (1989) 339.
[20] A.L. Dyer, M.R. Craig, J.E. Babiarz, K. Kiyak, J.R. Reynolds, Macromolecules 43
(2010) 4460.
[21] P.M. Beaujuge, S. Ellinger, J.R. Reynolds, Nat. Mater. 7 (2008) 795.
[22] G. Sonmez, H. Meng, Q. Zhang, F. Wudl, Adv. Funct. Mater. 13 (2003) 726.
[23] B. Sankaran, J.R. Reynolds, Macromolecules 30 (1997) 2582.
[24] M. Li, A. Patra, Adv. Mater. 21 (2009) 1707.
[25] P.H. Aubert, A.A. Argun, A. Cirpan, D.B. Tanner, J.R. Reynolds, Chem. Mater. 16
(2004) 2386.
[26] T. Kawata, M. Yamamoto, M. Yamana, M. Tajima, T. Nakano, Jpn. J. Appl. Phys.
14 (1975) 725.
long term redox stability. Although the high reactivity of the 2, 6
positions of DTT due to high spin density is well known, we would
like to focus attention to the size of substituents. It is notable that a
large size substituent is more effective to stabilize the redox state
than a small size substituent. It is likely that the large size cage
structure protects the core in which the HOMO exists and prevents
degradation. In other words, it is suggested that the reactivity of
the radical cation would be reduced by use of the large size cage
structure, therefore the long term redox stability of a small mole-
cule increased in spite of a short conjugation length relative to con-
ductive polymers.
The compounds with large size substituents such as 4,40-di-tert-
butyl-(1,10-biphenyl)-2-yl and (1,10:30,100-terphenyl)-2-yl show
good electrochromicity and excellent long term redox stability of
17,000 times and over 20,000 times in repeated oxidation, respec-
tively. Long term reversible behavior is a notable feature for the
present core-cage system that promises the potential use as an
electrochromic and electroconductive material in organic electron-
ics. Further studies on the core-cage structural design of dithie-
no[3,2-b:20,30-d]thiophene (DTT) derivatives as well as their
application in organic electorochromic devices are now in progress
in our group.
[27] C.J. Schoot, J.J. Ponjee, H.T. van Dam, R.A. van Doorn, P.T. Bolwijn, Appl. Phys.
Lett. 23 (1973) 64.
Appendix A. Supplementary material
[28] M. Yamana, Jpn. J. Appl. Phys. 15 (1976) 2469.
[29] J. Bruinink, P. van Zanten, J. Electrochem. Soc. 124 (1977) 1232.
[30] D.J. Barclay, B.F. Dowden, A.C. Lowe, J.C. Wood, Appl. Phys. Lett. 42 (1983) 911.
[31] R.J. Mortimer, Chem. Soc. Rev. 26 (1997) 147.
Supplementary data associated with this article can be found, in
[32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Rob, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Gaussian, Inc., Wallingford, CT, 2003.
[33] F. Garnier, G. Tourillon, M. Gazard, J.C. Dubois, J. Electroanal. Chem. 148 (1983)
299.
References
[1] M.G. Hill, J.F. Penneau, B. Zinger, K.R. Mann, L.L. Miller, Chem. Mater. 4 (1992)
1106.
[2] M.G. Hill, K.R. Mann, L.L. Miller, J.F. Penneau, J. Am. Chem. Soc. 114 (1992)
2728.
[3] T. Okamoto, K. Kudoh, A. Wakamiya, S. Yamaguchi, Chem. Eur. J. 13 (2007) 548.
[4] K. Takimiya, N. Niihara, T. Otsubo, Synthesis 10 (2005) 1589.
[5] S. Zhang, Y. Guo, H. Xi, C. Di, J. Yu, K. Zheng, R. Liu, X. Zhan, Y. Liu, Thin Solid
Films 517 (2009) 2968.
[6] N. Metri, X. Sallenave, L. Beouch, C. Plesse, F. Goubard, C. Chevrot, Tetrahedron
Lett. 51 (2010) 6673.
[7] C. Kima, M. Chenb, Y. Chiangb, Y. Guob, J. Youna, H. Huanga, Y. Liangb, Y. Linb,
Y. Huangb, T. Hub, G. Leed, A. Facchettia, T.J. Marks, Org. Electron. 11 (2010)
801.
[8] W. Schroth, E. Hintzsche, H. Jordan, T. Jende, R. Spitzner, I. Thondorf,
Tetrahedron 53 (1997) 7509.
[34] A. Smie, A. Synowczyk, J. Heinze, R. Alle, P. Tschuncky, G. Götz, P. Bäuerle, J.
Electroanal. Chem. 452 (1998) 87.
[35] P. Tschuncky, J. Heinze, Synth. Met. 55 (1993) 1603.