E
M. Grübel et al.
Letter
Synlett
(9) (a) de Alvarenga, E. S.; Mann, J. J. Chem. Soc., Perkin Trans. 1
1993, 2141. (b) de Alvarenga, E. S.; Cardin, C. J.; Mann, J. Tetrahe-
dron 1997, 40, 3169. (c) Bertrand, S.; Glapski, C.; Hoffmann, N.;
Pete, J.-P. Tetrahedron Lett. 1999, 40, 3169. (d) Bertrand, S.;
Hoffmann, N.; Pete, J.-P. Eur. J. Org. Chem. 2000, 2227. (e) Bauer,
A.; Westkämper, F.; Grimme, S.; Bach, T. Nature 2005, 436,
1139.
(10) For nonfunctionalized amines, see: (a) McNally, A.; Prier, C. K.;
MacMillan, D. W. C. Science 2011, 334, 1114. (b) Ruiz Espelt, L.;
Wiensch, E. M.; Yoon, T. P. J. Org. Chem. 2013, 78, 4107. (c) Zhu,
S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M. J. Am.
Chem. Soc. 2013, 135, 1823. (d) Dai, X.; Cheng, D.; Guan, B.; Mao,
W.; Xu, W.; Li, X. J. Org. Chem. 2014, 79, 7212. (e) Dai, X.; Mao,
R.; Guan, B.; Xu, X.; Li, X. RSC Adv. 2015, 5, 55290. (f) Murphy, J.
J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016,
532, 218.
(0.05 equiv) were dissolved in dry DMF (ca. 2 mL/0.1 mmol sub-
strate). The yellow mixture was degassed by repeating a freeze-
pump-thaw cycle (3×) and irradiated for 14 h with 30 W blue
LED lamps (λ = 455 nm) at r.t. whilst continuously stirring
under an argon atmosphere. After 14 h, water (ca. 5 mL/0.1
mmol) was added. The layers were separated and the aqueous
layer was extracted with diethyl ether (3× ca. 6 mL/0.1 mmol).
The combined organic layers were washed with brine and dried
with Na2SO4. After filtration, residual solvent was removed
under reduced pressure. The crude product was purified by
column chromatography to obtain the photoproduct.
Representative NMR data (1a): 1H NMR (500 MHz, CDCl3): δ =
7.40–7.34 (m, 2 H, 2× meta-CPh-H), 7.34–7.28 (m, 2 H, 2× ortho-
C
Ph-H), 7.27–7.21 (m, 1 H, para-CPh-H), 7.17–7.07 (m, 3 H, H-6,
H-7, H-8), 7.00–6.94 (m, 1 H, H-5), 4.13–3.99 (m, 2 H, CH2CH3),
3.80 (d, 2J = 14.9 Hz, 1 H, CHH-1), 3.71 (d, 2J = 13.1 Hz, 1 H, Ph-
CHH), 3.58 (d, 2J = 13.1 Hz, 1 H, Ph-CHH), 3.42 (d, 2J = 14.9 Hz, 1
H, CHH-1), 3.38–3.31 (m, 1 H, H-4), 2.88 (dd, 2J = 16.0 Hz, 3J = 9.7
Hz, 1 H, CHHCO2Et), 2.80 (ddd, 3J = 11.7 Hz, 4J = 3.2, 1.3 Hz, 1 H,
CHH-3), 2.61–2.58 (m, 2 H, CHH-3, CHHCO2Et), 1.20 (t, 3J = 7.1
Hz, 3 H, CH2CH3). 13C NMR (101 MHz, CDCl3): δ = 172.9 (s,
CO2Et), 138.7 (s, CH2-CPh), 137.6 (s, C-4a), 135.3 (s, C-8a), 129.1
(d, meta-CHPh), 128.4 (d, C-8), 128.4 (d, ortho-CHPh), 127.2 (d,
para-CHPh), 126.7 (d, C-6*), 126.5 (d, C-7*), 126.2 (d, C-5), 62.8
(t, CH2-CPh), 60.4 (t, CH2CH3), 56.5 (t, C-1), 54.7 (t, C-3), 41.2 (t,
CH2CO2Et), 35.8 (d, C-4), 14.3 (q, CH2CH3). * Assignment is inter-
convertible. Major diastereoisomer (1i): 1H NMR (400 MHz,
CDCl3): δ = 7.39–7.36 (m, 2 H, 2× meta-CPh-H), 7.33–7.29 (m, 2
H, 2× ortho-CPh-H), 7.27−7.22 (m, 1 H, para-CPh-H), 7.22–7.13
(m, 4 H, H-5, H-6, H-7, H-8), 4.10 (d, 2J = 13.6 Hz, 1 H, Ph-CHH),
3.75 (q, 3J = 6.3 Hz, 1 H, H-1), 3.55 (s, 3 H, CO2CH3), 3.40 (d, 2J =
13.6 Hz, 1 H, Ph-CHH), 3.26 (dq, 3J = 9.0 Hz, 3J = 5.0 Hz, 1 H, H-4),
2.90–2.80 (m, 2 H, CHH-3, CHHCO2CH3), 2.66 (dd, 2J = 16.0 Hz, 3J
= 5.0 Hz, 1 H, CHHCO2CH3), 2.62–2.56 (m, 1 H, CHH-3), 1.53 (d, 3J
= 6.3 Hz, 3 H, CH3). 13C NMR (101 MHz, CDCl3): δ = 173.2 (s, CO),
140.4 (s, C-8a), 139.6 (s, CH2-CPh), 137.7 (s, C-4a), 128.9 (d,
meta-CHPh), 128.3 (d, ortho-CHPh), 128.1 (d, C-8*), 127.3 (d, C-
5*), 127.0 (d, para-CHPh), 126.4 (d, C-6**), 126.1 (d, C-7**), 58.9
(t, CH2-CPh), 57.8 (d, C-1), 51.5 (q, CO2CH3), 50.9 (t, C-3), 39.9 (t,
CH2CO2H3), 35.1 (d, C-4), 21.9 (q, CH3). */** Assignments are
interconvertible. Minor diastereoisomer (1i): 1H NMR (400
MHz, CDCl3): δ = 7.39–7.35 (m, 2 H, 2× meta-CPh-H), 7.33–7.28
(m, 2 H, 2× ortho-CPh-H), 7.27–7.22 (m, 1 H, para-CPh-H), 7.17–
7.09 (m, 3 H, H-6, H-7, H-8), 7.06–7.00 (m, 1 H, H-5), 4.10 (q, 3J =
6.6 Hz, 1 H, H-1), 3.83 (d, 2J = 13.1 Hz, 1 H, Ph-CHH), 3.63 (d, 2J =
13.1 Hz, 1 H, Ph-CHH), 3.52 (s, 3 H, CO2CH3), 3.23–3.17 (m, 1 H,
H-4), 3.00 (d, 2J = 10.6 Hz, 1 H, CHH-3), 2.88 (dd, 2J = 16.2 Hz, 3J =
10.1 Hz, 1 H, CHHCO2CH3), 2.55–2.45 (m, 2 H, CHH-3, CHH-
CO2CH3), 1.28 (d, 3J = 6.6 Hz, 3 H, CH3). 13C NMR (101 MHz,
CDCl3): δ = 173.5 (s, CO), 141.4 (s, C-8a), 139.4 (s, CH2-CPh),
137.5 (s, C-4a), 129.2 (d, meta-CHPh), 128.8 (d, C-8), 128.3 (d,
ortho-CHPh), 127.4 (d, para-CHPh), 127.0 (d, C-5), 126.4 (d, C-6*),
126.2 (d, C-7*), 58.4 (t, CH2-CPh), 56.0 (d, C-1), 51.5 (q, CO2CH3),
45.8 (t, C-3), 41.1 (t, CH2CO2CH3), 35.9 (d, C-4), 14.8 (q, CH3). *
Assignment is interconvertible.
(11) For silylated amines, see: (a) Miyake, Y.; Ashida, Y.; Nakajima,
K.; Nishibayashi, Y. Chem. Commun. 2012, 48, 6966. (b) Lenhart,
D.; Bach, T. Beilstein J. Org. Chem. 2014, 10, 890. (c) Ruiz Espelt,
L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc.
2015, 137, 2452. (d) Lenhart, D.; Bauer, A.; Pöthig, A.; Bach, T.
Chem. Eur. J. 2016, 22, 6519.
(12) Recent reviews: (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343,
1239176. (b) Reckenthäler, M.; Griesbeck, A. G. Adv. Synth. Catal.
2013, 355, 2727. (c) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013,
11, 2387. (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem.
Rev. 2013, 113, 5322. (e) Tucker, J. W.; Stephenson, C. R. J. J. Org.
Chem. 2012, 77, 1617. (f) Zeitler, K. Angew. Chem. Int. Ed. 2009,
48, 9785.
(13) (a) Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030.
(b) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
(14) Key publications: (a) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem.
Commun. 2011, 47, 12709. (b) Rueping, M.; Vila, C.; Koenigs, R.
M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.
(c) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47,
8679. (d) Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.;
Loh, K. P.; Tan, C.-H. Green Chem. 2011, 13, 3341. (e) Zhao, G.;
Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Chem. Commun. 2012,
48, 2337. (f) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson,
C. R. J. Org. Lett. 2012, 14, 94.
(15) Condie, A. G.; Gonzá lez-Ǵomez, J. C.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2010, 132, 1464.
(16) Kohl, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14,
672.
(17) Liu, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem. Int. Ed. 2015, 54,
11443.
(18) Nakamura, Y.; O-kawa, K.; Minami, S.; Ogawa, T.; Tobita, S.;
Nishimura, J. J. Org. Chem. 2002, 67, 1247.
(19) Xue, Q.; Mao, Z.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C. Tetrahedron
Lett. 2012, 53, 1851.
(20) Jeong, H. C.; Lim, S. H.; Cho, D. W.; Kim, S. H.; Mariano, P. S. Org.
Biomol. Chem. 2016, 14, 10502.
(21) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von
Zelewesky, A. Coord. Chem. Rev. 1988, 84, 85.
(22) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.;
Maillaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
(23) Böhm, A.; Bach, T. Chem. Eur. J. 2016, 22, 15921.
(24) Cyclization Reaction; General Procedure
(25) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
(26) Cooper, B. E.; Owen, W. J. J. Organomet. Chem. 1971, 29, 33.
Substrate (1.00 equiv), Cs2CO3 (1.00 equiv), H2O (1.00 equiv),
and photoredox catalyst [Ir{dF(CF3)ppy}(dtbpy)]PF6 [Ir(dF)]
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E