on functionalized HBCs with weaker dipoles showed that the
disc axial dynamics are dictated largely by the phase state.18
The present series indicates a strong t(T) dependence of the
disc axial motions within the mesophase. As expected, the
dynamics of 4 are the fastest and give rise to the lower freezing
temperatures in Table S3 (ESIw). The disc axial motion in 1
and 2 is substantially slower giving rise to higher freezing
temperatures for the disc rotational dynamics.
In summary, two novel dipole functionalized HBC derivatives
1 and 2 were synthesized based on the C2v-symmetric building
block 3. The strong molecular dipole moment in both HBCs
1 and 2 provides additional intermolecular dipole–dipole
interactions. The strong dipole was revealed to exert sig-
nificant effect on the self-association of 1 and 2 in solution
as well as the dynamic processes within the liquid crystalline
mesophase.
Fig. 2 Dielectric loss curves as a function of frequency for 1 (triangles),
2 (squares) and 4 (circles) at 313 K. The arrows indicate the approxi-
mate positions of the a- and a0-processes associated with the disc axial
motion.
This work was financially supported by the DFG Priority
Program SPP 1355, SPP 1459, ESF Project GOSPEL (Ref Nr:
09-EuroGRAPHENE-FP-001), EU Project GENIUS and ERC
grant on NANOGRAPH. L. Chen gratefully acknowledges
funding by the Alexander von Humboldt Foundation.
dependence that is distinctly different from an Arrhenius law
and can best be fitted by the Vogel–Fulcher–Tammann (VFT)
equation (ESIw). Interestingly, there exist two glass tempera-
tures for each compound. Both processes are associated with a
dipolar relaxation within the liquid crystalline phase. The a-
process reflects the fast axial motion that leaves an uncompen-
sated residual dipole moment.17 Responsible for this residual
dipole moment and the presence of the slower process are the
dipolar correlations within the columns as determined by
WAXS. Subsequently, this residual dipole moment relaxes
completely through the a0-process at a longer time scale. The
distribution of relaxation times reveals that both processes are
of collective nature (they involve several discs) but the slower
process, that completely randomizes the dipole, is more
collective. Thus, the two glass temperatures in these dipole
functionalized HBCs reflect the freezing of the partial (a)
and complete (a0) dipole randomization. Earlier DS studies
Notes and references
1 (a) W. Pisula, X. Feng and K. Mullen, Adv. Mater., 2010, 22,
¨
3634–3649; (b) W. Pisula, X. Feng and K. Mullen, Chem. Mater.,
¨
2011, 23, 554–567.
2 (a) S. Xiao, M. Myers, Q. Miao, S. Sanaur, K. Pang,
M. L. Steigerwald and C. Nuckolls, Angew. Chem., Int. Ed.,
2005, 44, 7390; (b) S. Zimmermann, J. H. Wendorff and
C. Weder, Chem. Mater., 2002, 14, 2218–2223.
3 (a) X. Dou, W. Pisula, J. Wu, G. J. Bodwell and K. Mullen,
Chem.–Eur. J., 2008, 14, 240–249; (b) C.-Y. Liu and A. J. Bard,
Nature, 2002, 418, 162–164.
4 J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara,
T. Shimomura, K. Ito, T. Hashizume, N. Ishii and T. Aida,
Science, 2004, 304, 1481–1483.
5 E. J. Foster, R. B. Jones, C. Lavigueur and V. E. Williams, J. Am.
Chem. Soc., 2006, 128, 8569–8574.
¨
6 (a) J. A. Rego, S. Kumar and H. Ringsdorf, Chem. Mater., 1996, 8,
1402–1409; (b) C. Lavigueur, E. J. Foster and V. E. Williams,
J. Am. Chem. Soc., 2008, 130, 11791–11800.
7 K. Kishikawa, S. Furusawa, T. Yamaki, S. Kohmoto,
M. Yamamoto and K. Yamaguchi, J. Am. Chem. Soc., 2002,
124, 1597–1605.
8 M. J. Frisch, et al., Revision B., Gaussian, Inc., Pittsburgh, PA, 2003.
9 C. Giessner-Prettre, B. Pullman, P. N. Borer, L.-S. Kan and
P. O. Tso, Biopolymers, 1976, 15, 2277–2286.
10 M. Kastler, W. Pisula, D. Wasserfallen, T. Pakula and K. Mullen,
¨
J. Am. Chem. Soc., 2005, 127, 4286–4296.
11 F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J.
Schenning, Chem. Rev., 2005, 105, 1491–1546.
12 A. S. Shetty, J. Zhang and J. S. Moore, J. Am. Chem. Soc., 1996,
118, 1019–1027.
13 R. B. Martin, Chem. Rev., 1996, 96, 3043–3064.
14 X. Feng, W. Pisula, T. Kudernac, D. Wu, L. Zhi, S. De Feyter and
K. Mullen, J. Am. Chem. Soc., 2009, 131, 4439–4448.
¨
15 J. Wu, A. Fechtenkotter, J. Gauss, M. D. Watson, M. Kastler,
C. Fechtenkotter, M. Wagner and K. Mullen, J. Am. Chem. Soc.,
¨
2004, 126, 11311–11321.
16 I. Fischbach, T. Pakula, P. Minkin, A. Fechtenkotter, K. Mullen
¨
and H. W. Spiess, J. Phys. Chem. B, 2002, 106, 6408–6418.
¨
17 M. M. Elmahdy, X. Dou, M. Mondeshki, G. Floudas, H.-J. Butt,
H. W. Spiess and K. Mullen, J. Am. Chem. Soc., 2008, 130,
¨
Fig. 3 Arrhenius relaxation map for compounds
4 (circles), 2
5311–5319.
18 M. M. Elmahdy, G. Floudas, M. Kastler and K. Mullen, J. Phys.:
(squares) and (triangles). The processes correspond to the
1
¨
a-process (fast axial motion) (filled symbols) and the slower a0 process
(collective slow motion) (open symbols). Lines are fits to the VFT
equation.
Condens. Matter, 2008, 20, 244105.
19 S. Havriliak and S. Negami, J. Polym. Sci., Part C: Polym. Symp.,
2007, 14, 99–117.
c
704 Chem. Commun., 2012, 48, 702–704
This journal is The Royal Society of Chemistry 2012