ORGANIC
LETTERS
2012
Vol. 14, No. 2
464–467
Synthesis of Thiophenylalanine-
containing Peptides via Cu(I)-mediated
Cross-Coupling
Christina R. Forbes and Neal J. Zondlo*
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
19716, United States
Received November 1, 2011
ABSTRACT
Aryl thiolates have unique reactive, redox, electronic, and spectroscopic properties. A practical approach to synthesize peptides containing
thiophenylalanine has been developed via a novel Cu(I)-mediated cross-coupling reaction between thiolacetic acid and iodophenylalanine-
containing peptides in the solid phase. This approach is compatible with all canonical proteinogenic functional groups, providing general access
to aryl thiolates in peptides. Peptides containing thiophenylalanine (pKa 6.4) were readily elaborated to contain methyl, allyl, and nitrobenzyl
thioethers, disulfides, sulfoxides, sulfones, or sulfonates.
Cysteine residues play critical roles in protein folding,
structure, catalysis, response to oxidative stress, metal bind-
ing, modification, and cell signaling.1 These uses are depen-
dent on the redox properties, acidity, and nucleophilicity of
thiols and thiolates. The multiple oxidation states accessible
to thiols are critical in their versatility in function. Aryl thiols
may perform in similar roles but with reduced pKa and elec-
tronically tunable properties.2 Considering the special role of
tyrosine in biomolecular recognition, thiophenylalanine repre-
sents an intriguing hybrid of tyrosine and cysteine residues.3
Thiophenylalanine and related amino acids have di-
verse potential applications in fields including medicinal
chemistry, enzymology, protein design, materials science,
and nanotechnology. However, there are very few pub-
lished examples of thiophenylalanine-containing pep-
tides. The first such description, applied by Escher in
angiotensin II analogues, employed sulfonylation of phe-
nylalanine, followed by tin reduction, thiol protection,
and amine protection to generate the Boc amino acids.4
DeGrado extended this approach to prepare Fmoc-thio-
phenylalanine and employed its disulfide in a peptide as a
light-based switch of protein folding.5 In an alternative
synthetic approach, Still used diazonium chemistry to access
thiophenylalanine-containing peptides that were subse-
quently photocoupled to prepare thioether analogues of
diaryl ether antibiotics.6 Recently, Hecht incorporated
thiophenylalanine in place of an active site tyrosine of
(4) Escher, E.; Bernier, M.; Parent, P. Helv. Chim. Acta 1983, 66,
1355–65. Guillemette, G.; Bernier, M.; Parent, P.; Leduc, R.; Escher, E.
J. Med. Chem. 1984, 27, 315–20. Other syntheses of 4-ThioPhe: Johnson,
T. B.; Brautlecht, C. A. J. Biol. Chem. 1912, 12, 175–96. Elliott, D. F.;
Harrington, C. J. Chem. Soc. 1949, 1374–8. Colescott, R. L.; Herr, R. R.;
Dailey, J. P. J. Am. Chem. Soc. 1957, 79, 4232–5. Bergel, F.; Stock, J. A.
J. Chem. Soc. 1959, 90–7. Synthesis of S-t-butyl Boc-ThioPhe via Pd
cross-coupling: Rajagopalan, S.; Radke, G.; Evans, M.; Tomich, J. M.
Synth. Commun. 1996, 26, 1431–40.
(5) Lu, H. S. M.; Volk, M.; Kholodenko, Y.; Gooding, E.; Hochstrasser,
R. M.; DeGrado, W. F. J. Am. Chem. Soc. 1997, 119, 7173–80.
(6) Hobbs, D. W.; Still, W. C. Tetrahedron Lett. 1987, 28, 2805–8.
Hobbs, D. W.; Still, W. C. Tetrahedron Lett. 1989, 30, 5405–8. Related
approaches to aryl thioethers in peptides: West, C. W.; Rich, D. H. Org.
Lett. 1999, 1, 1819–22. Moreau, X.; Campagne, J.-M. J. Organomet.
Chem. 2003, 687, 322–6.
(1) Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol. 2010, 5, 47–62.
Leonard, S. E.; Garcia, F. J.; Goodsell, D. S.; Carroll, K. S. Angew.
Chem., Int. Ed. 2011, 50, 4423–7. Berg, J. M.; Godwin, H. A. Annu. Rev.
Biophys. Biomol. Struct. 1997, 26, 357–71. Adams, S. R.; Campbell,
R. E.; Gross, L. A.; Martin, B. R.; Walkup, G. K.; Yao, Y.; Llopis, J.;
Tsien, R. Y. J. Am. Chem. Soc. 2002, 124, 6063–76. Chalker, J. M.;
Bernardes, G. J. L.; Lin, Y. A.; Davis, B. G. Chem. Asian J. 2009, 4,
630–40. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H.
Science 1994, 266, 776–9.
(2) Gough, J. D.; Williams, J., R. H.; Donofrio, A. E.; Lees, W. J.
J. Am. Chem. Soc. 2002, 124, 3885–92.
(3) Koide, S.; Sidhu, S. S. ACS Chem. Biol. 2009, 4, 325–34.
(7) Gao, R.; Zhang, Y.; Choudhury, A. K.; Dedkova, L. M.; Hecht,
S. M. J. Am. Chem. Soc. 2005, 127, 3321–31. Chen, S.; Zhang, Y.; Hecht,
S. M. Biochemistry 2011, 50, 9340–51.
r
10.1021/ol202947f
Published on Web 01/06/2012
2012 American Chemical Society