cathode. Therefore, the experiment of entry 4 (Table 2) was
reproduced but without the base (entry 5, Table 2). The targeted
meso–meso dimer 2-Zn is then obtained in a good 85% yield but
6% of free-base 1-H2 and 9% of 1-Zn-Cl are also formed as side-
products, thus confirming the beneficial effect of the base.
Finally, to avoid the systematic formation of the chlorinated
by-product, we chose to exclude the use of CH2Cl2. DMF was
chosen as the substitute providing a satisfactory solubility of 1-
Zn. Keeping the optimized conditions of entry 4 but with DMF
in pure form as solvent (entry 6), the electrosynthesis of 2-Zn was
obtained as the sole detectable product with 1H NMR yield higher
than 95%. This electrosynthesis was then scaled up (20.0 mg of 1-
Zn, c = 9.92 ¥ 10-4 M) and after purification by silica gel column
chromatography, 2-Zn was isolated in 93.5% yield.
2 C. O. Paul-Roth, J. Letessier, S. Juillard, G. Simonneaux, T. Roisnel
and J. Rault-Berthelot, J. Mol. Struct., 2008, 872, 105; P. A. Liddell,
M. Gervaldo, J. W. Bridgewater, A. E. Keirstead, S. Lin, T. A. Moore,
A. L. Moore and D. Gust, Chem. Mater., 2008, 20, 135; J. Rault-
Berthelot, C. Paul-Rothab, C. Poriel, S. Juillard, S. Ballut, S. Drouet and
G. Simonneaux, J. Electroanal. Chem., 2008, 623, 204; R. E. Martin and
F. Diederich, Angew. Chem., Int. Ed., 1999, 38, 1350; H. L. Anderson,
Chem. Commun., 1999, 2323.
3 K. Susumu, T. Shimidzu, K. Tanaka and H. Segawa, Tetrahedron Lett.,
1996, 37, 8399; R. G. Khoury, L. Jaquinod and K. M. Smith, Chem.
Commun., 1997, 1057; A. Osuka and H. Shimidzu, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 135; M. O. Senge and X. Feng, Tetrahedron
Lett., 1999, 40, 4165; Y. Deng, C. K. Chang and D. G. Nocera, Angew.
Chem., Int. Ed., 2000, 39, 1066; H. Uno, Y. Kitawaki and N. Ono, Chem.
Commun., 2002, 116; T. Hasobe, H. Imahori, Hiroko Yamada, T. Sato,
K. Ohkubo and S. Fukuzumi, Nano Lett., 2003, 3, 409; N. Aratani, A.
Takagi, Y. Yanagawa, T. Matsumoto, T. Kawai, Z. S. Yoon, D. Kim and
A. Osuka, Chem.–Eur. J., 2005, 11, 3389; L.-A. Fendt, H. Fang, M. E.
Plonska-Brzezinska, S. Zhang, F. Cheng, C. Braun, L. Echegoyen and
F. Diederich, Eur. J. Org. Chem., 2007, 4659; G. Bringmann, D. C. G.
Go¨tz, T. A. M. Gulder, T. H. Gehrke, T. Bruhn, T. Kupfer, K. Radacki,
H. Braunschweig, A. Heckmann and C. Lambert, J. Am. Chem. Soc.,
2008, 130, 17812.
4 L.-M. Jin, L. Chen, J.-J. Yin, C.-C. Guo and Q.-Y. Chen, Eur. J. Org.
Chem., 2005, 3994.
5 T. Kamada, N. Aratani, T. Ikeda, N. Shibata, Y. Higuchi, A. Wakamiya,
S. Yamaguchi, K. S. Kim, Z. S. Yoon, D. Kim and A. Osuka, J. Am.
Chem. Soc., 2006, 128, 7670.
6 C.-A. Wu, C.-L. Chiu, C.-L. Mai, Y.-S. Lin and C.-Y. Yeh, Chem.–Eur.
J., 2009, 15, 4534.
7 N. Yoshida, H. Shimidzu and A. Osuka, Chem. Lett., 1998, 55.
8 J. Wojaczyn´ski, L. Latos-Graz˙yn´ski, P. J. Chmielewski, P. V. Calcar and
A. L. Balch, Inorg. Chem., 1999, 38, 3040.
Conclusions
The efficient electrosynthesis of the meso,meso-linked zinc
porphyrin dimer from a zinc(II) 5,10,15-tris-aryl-substituted-
porphyrin monomer has been achieved. With dichloromethane
as the reaction solvent, an unexpected chloro meso-substituted
derivative is generated as a by-product. The addition of the
hindered base 2,6-lutidine as well as operating in dimethylfor-
mamide are the key parameters to obtain high yields of the
desired coupled product, thus providing crucial information to
any chemist interested in this kind of compound. Studies are in
progress to extend the scope of this reaction. We now want to apply
these optimised conditions to electron-deficient zinc porphyrin
monomers which are difficult not to say impossible to couple
by chemical routes. Besides, we want to extend this method to
porphyrin monomer free bases or those metallated with metals
other than zinc.
9 A. Tsuda, A. Nakano, H. Furuta, H. Yamochi and A. Osuka, Angew.
Chem., Int. Ed., 2000, 39, 558.
10 A. Tsuda, H. Furuta and A. Osuka, J. Am. Chem. Soc., 2001, 123,
10304.
11 X. Shi and L. S. Liebeskind, J. Org. Chem., 2000, 65, 1665.
12 M. O. Senge and X. Feng, J. Chem. Soc., Perkin Trans. 1, 2000, 3615.
13 L.-M. Jin, J.-J. Yin, L. Chen, C.-C. Guo and Q.-Y. Chen, Synlett, 2005,
19, 2893.
This work echoes our recently reported results on the redox
reactivity of the totally unsubstituted porphyrin, i.e. magnesium
porphine (MgP). These studies have revealed that MgP is readily
oligomerised and/or polymerised by electrochemical oxidation19,21
via the formation of new meso–meso links. Nevertheless, for
porphine, due to the multiplicity of reactive sites and the absence
of steric constraint around the macrocycle, the process was too
fast to be analysed in detail by the usual electrochemical methods.
This process is by far much simpler in the case of 1-Zn, involving
the formation of only one C–C bond. Thus, this tri-substituted
porphyrin is opportune to model porphine in the very first steps
of its oligomerisation/polymerisation, and this work is our first
contribution in this line of research. A complete and detailed
electrochemical analysis of the C–C coupling mechanism is to
follow.
14 Q. Ouyang, Y.-Z. Zhu, C.-H. Zhang, K.-Q. Yan, Y.-C. Li and J.-Y.
Zheng, Org. Lett., 2009, 11, 5266.
15 A. K. Sahoo, Y. Nakamura, N. Aratani, K. S. Kim, S. B. Noh, H.
Shinokubo, D. Kim and A. Osuka, Org. Lett., 2006, 8, 206.
16 A. Takai, B. Habermeyer and S. Fukuzumi, Chem. Commun., 2011, 47,
6804.
17 T. Ogawa, Y. Nishimoto, N. Yoshida, N. Ono and A. Osuka, Chem.
Commun., 1998, 337.
18 T. Ogawa, Y. Nishimoto, N. Yoshida, N. Ono and A. Osuka, Angew.
Chem., Int. Ed., 1999, 38, 176.
19 C. H. Devillers, D. Lucas, A. K. D. Dime, Y. Rousselin and Y. Mugnier,
Dalton Trans., 2010, 39, 2404.
20 J. Nakazaki, Y. Senshu and H. Segawa, Polyhedron, 2005, 24,
2538.
21 M. A. Vorotyntsev, D. V. Konev, C. H. Devillers, I. Bezverkhyy and
O. Heintz, Electrochim. Acta, 2010, 55, 6703; M. A. Vorotyntsev, D.
V. Konev, C. H. Devillers, I. Bezverkhyy and O. Heintz, Electrochim.
Acta, 2011, 56, 3436.
22 W. M. Z. Otwinowski, “Processing of X-ray Diffraction Data Collected
in Oscillation Mode “, Methods in Enzymology, 1997, Macromolecular
Crystallography, part A, 276, C. W. Carter, Jr. & R. M. Sweet, ed.,
Academic Press.
Acknowledgements
23 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl.
The authors would like to thank the Centre National de la
Recherche Scientifique, the Conseil Re´gional de Bourgogne and
the Universite´ de Bourgogne for financial support. The authors
are grateful to Sophie Dalmolin for technical support, and David
Holland for her nice and priceless expertise.
Crystallogr., 1993, 26, 343.
24 G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008,
64, 112; E. e. G. M. Sheldrick, University of Go¨ttingen, Go¨ttingen,
Germany, 1997.
25 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
26 B. Habermeyer, A. Takai, C. P. Gros, M. E. Ojaimi, J.-M. Barbe and S.
Fukuzumi, Chem.–Eur. J., 2011, 17, 10670.
27 Y. Inokuma, N. Ono, H. Uno, D. Y. Kim, S. B. Noh, D. Kim and A.
Osuka, Chem. Commun., 2005, 3782; T. Ikeda, J. M. Lintuluoto, N.
Aratani, Z. S. Yoon, D. Kim and A. Osuka, Eur. J. Org. Chem., 2006,
3193.
Notes and references
1 I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard and C. Stern,
Chem. Rev., 2009, 109, 1659.
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 929–936 | 935
©