Journal of the American Chemical Society
Communication
(5) For the first reported isolation of 3, see: (a) San Feliciano, A. S.;
Barrero, A. F.; Medarde, M.; Miguel del Corral, J. M.; Ledesma, E.
Tetrahedron Lett. 1982, 23, 3097. For the subsequent isolation of 3−
6, see: (b) San Feliciano, A.; Barrero, A. F.; Medarde, M.; Miquel del
Corral, J. M.; Aramburu Aizpiri, A.; S.-Ferrando, F. Tetrahedron 1984,
40, 873. For the structural reassignment of 3 and 4, see: (c) San
Feliciano, A.; Barrero, A. F.; Medarde, M.; Miguel del Corral, J. M.;
Aramburu, A.; Perales, A.; Fayos, J.; S.-Ferrando, F. Tetrahedron 1985,
41, 5711.
speaks to the relatively similar thermodynamic stabilities of the
four olefin isomers and provides potential access to the
remaining asteriscunolides.22
In summary, the first synthesis of asteriscunolide D (6) has
been accomplished in nine steps without the use of protecting
groups. The challenging 11-membered ring was forged via a
diastereoselective DMTSF-mediated cyclization. The addition
of a silyl enol ether to a transient thionium intermediate
represents a mild and irreversible alternative to an intra-
molecular aldol addition, which would be complicated by facile
retro-aldol cleavage due to the inherent ring strain and the
kinetic lability of the β-hydroxy ketone product. The success of
this new macrocyclization protocol for such a difficult ring size
bodes well for its broad applicability as a versatile macro-
cyclization. In addition, a stereospecific elimination protocol
was identified allowing for the exclusive formation of the most
biologically active asteriscunolide. The absolute stereochemical
configuration of 6 was introduced by a chemoselective Zn-
ProPhenol catalyzed enantioselective addition of methyl
propiolate to an aliphatic aldehyde bearing an acidic ketone
functional group, thus providing a facile asymmetric synthesis
of butenolides in a direct two-step sequence when combined
with the Ru-catalyzed alkene−alkyne coupling. Extension of the
DMTSF-mediated cyclization strategy toward other bioactive
natural products containing medium-sized rings is currently
underway.
(6) Rauter, A. P.; Branco, I.; Bermejo, J.; Gonzal
Gravalos, M. D.; San Feliciano, A. Phytochemistry 2001, 56, 167.
(7) Negrín, G.; Eiroa, J. L.; Morales, M.; Triana, J.; Quintana, J.;
Estevez, F. Mol. Carcinog. 2010, 49, 488.
́
ez, A. G.; G.-
́
́
(8) Rare examples involve macroaldolizations of substrates lacking
enolizeable α-CH bonds to form macroheterocycles; see: (a) Hayward,
C. M.; Yohannes, D.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115,
9345. (b) Meng, D.; Bertinato, P.; Balog, A.; Su, D.-S.; Kamenecka, T.;
Sorensen, E. J.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073.
(c) Knowles, R. R.; Carpenter, J.; Blakey, S. B.; Kayano, A.; Mangion,
I. K.; Sinz, C. J.; MacMillan, D. W. C. Chem. Sci. 2011, 2, 308.
(9) For an example demonstrating the potential reversibility of
macroaldolization, see: Yang, W.; Digits, C. A.; Hatada, M.; Narula, S.;
Rozamus, L. W.; Huestis, C. M.; Wong, J.; Dalgamo, D.; Holt, D. A.
Org. Lett. 1999, 1, 2033.
(10) (a) Trost, B. M.; Murayama, E. J. Am. Chem. Soc. 1981, 103,
6529. (b) Trost, B. M.; Sato, T. J. Am. Chem. Soc. 1985, 107, 719.
(11) (a) Trost, B. M.; Muller, T. J. J.; Martinez, J. J. Am. Chem. Soc.
̈
1995, 117, 1888. (b) Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999,
40, 7739. (c) Roethle, P. A.; Hernandez, P. T.; Trauner, D. Org. Lett.
2006, 8, 5901.
ASSOCIATED CONTENT
■
(12) (a) Trost, B. M.; Weiss, A. H.; von Wagelin, A. J. J. Am. Chem.
Soc. 2006, 128, 8. (b) Trost, B. M.; Weiss, A. H. Org. Lett. 2006, 8,
4461. (c) Trost, B. M.; O’Boyle, B. M. J. Am. Chem. Soc. 2008, 130,
16190.
S
* Supporting Information
Experimental procedures and analytical data for all new
compounds. This material is available free of charge via the
(13) For alternative catalytic asymmetric additions of propiolate
nucleophiles to aldehydes, see: (a) Gao, G.; Wang, Q.; Yu, X.-Q.; Xie,
R.-G.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 122. (b) Rajaram, A. R.;
Pu, L. Org. Lett. 2006, 8, 2019. (c) Lin, L.; Jiang, X.; Liu, W.; Qiu, L.;
Xu, Z.; Xu, J.; Chan, A. S. C.; Wang, R. Org. Lett. 2007, 9, 2329.
(d) Turlington, M.; DeBerardinis, A. M.; Pu, L. Org. Lett. 2009, 11,
2441. (e) Xu, T.; Liang, C.; Cai, Y.; Li, J.; Li, Y.-M.; Hui, X.-P.
Tetrahedron: Asymmetry 2009, 20, 2733. (f) Kojima, N.; Nishijima, S.;
Tsuge, K.; Tanaka, T. Org. Biomol. Chem. 2011, 9, 4425.
(14) (a) Trost, B. M.; Fettes, A.; Shireman, B. T. J. Am. Chem. Soc.
2004, 126, 2660. (b) Trost, B. M.; Shin, S.; Sclafani, J. A. J. Am. Chem.
Soc. 2005, 127, 8602.
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (CHE-0846427)
and the National Institutes of Health (GM-33049) for their
generous support of our programs. M.J.B. is grateful to Victoria
University of Wellington for a Ph.D. scholarship. We thank
Umicore for a generous gift of ruthenium salts.
(15) Tormakangas, O. P.; Saarenketo, P.; Koskinen, A. M. P. Org.
̈
̈
Process Res. Dev. 2002, 6, 125.
(16) Coppola, G. M. Synthesis 1988, 81.
(17) For conditions effecting the selective formation of E- or Z-silyl
REFERENCES
■
enol ethers, see: (a) Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Gotz,
̈
(1) (a) Corey, E. J.; Hamanaka, E. J. Am. Chem. Soc. 1967, 89, 2758.
(b) Vig, O. P.; Ram, B.; Atwal, K. S.; Bari, S. S. Indian J. Chem. 1976,
14B, 855. (c) Kitagawa, Y.; Itoh, A.; Hashimoto, S.; Yamamoto, H.;
Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3864. (d) McMurry, J. E.; Matz,
J. R. Tetrahedron Lett. 1982, 23, 2723. (e) Takahashi, T.; Kitamura, K.;
Tsuji, J. Tetrahedron Lett. 1983, 24, 4695. (f) Miyaura, N.; Suginome,
H. Tetrahedron Lett. 1984, 25, 761. (g) Corey, E. J.; Daigneault, S.;
Dixon, B. R. Tetrahedron Lett. 1993, 34, 3675. (h) Hu, T.; Corey, E. J.
Org. Lett. 2002, 4, 2441.
(2) For an instructive example of an approach toward zerumbone
utilizing a HWE olefination to establish the 11-membered ring (3%
yield), see: Kodama, M.; Shiobara, Y.; Sumitomo, H.; Mitani, K.;
Ueno, K. Chem. Pharm. Bull. 1987, 35, 4039.
A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krageloh, K.; Oesterle,
̈
T.; Steppan, W.; West, W.; Simchen, G. Synthesis 1982, 1.
(b) Denmark, S. E.; Fujimori, S.; Pham, S. M. J. Org. Chem. 2005,
70, 10823.
(18) For examples of soft enolization of α,β-unsaturated substrates
providing Z-silyl enol ethers, see: (a) Larson, E. R.; Danishefsky, S. J.
Am. Chem. Soc. 1982, 104, 6458. (b) Li, L.-H.; Tius, M. A. Org. Lett.
2002, 4, 1637. (c) Kanemasa, S.; Kumegawa, M.; Wada, E.; Nomura,
M. Bull. Chem. Soc. Jpn. 1991, 64, 2990.
(19) An enolization model consistent with the observed Z-selectivity
avoids steric interaction of the methyl group with the nearly coplanar
vinyl hydrogen atom compared to a lone pair of electrons on oxygen as
depicted in i.
(3) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; John
Wiley & Sons, Inc.: New York, 1995; p 159.
(4) For a recent biological study concerning the cytotoxicity of
zerumbone, see: Takada, Y.; Murakami, A.; Aggarwal, B. B. Oncogene
2005, 24, 6957.
1476
dx.doi.org/10.1021/ja210986f | J. Am. Chem.Soc. 2012, 134, 1474−1477