Biao-Lin Yin et al.
COMMUNICATIONS
Natural Science Foundation of Guangdong Province, China
(10351064101000000).
b) Modern Organonickel Chemistry, (Ed.:Y. Tamaru),
Wiley-VCH, Weinheim, 2005; c) D. C. Billington, in:
Comprehensive Organic Synthesis, (Eds.: B. M. Trost, I.
Fleming), Pergamon Press, Oxford, 1991, Vol. 3, p 423;
d) G. Garcꢄa-Gꢅmez, J. M. Morꢆto, J. Am. Chem. Soc.
1999, 121, 878–879; e) M. L. Nadal, J. Bosch, J. M. Vila,
G. Klein, S. Ricart, J. M. Morꢆto, J. Am. Chem. Soc.
2005, 127, 10476–10477; f) S. Ikeda, Acc. Chem. Res.
2000, 33, 511–519.
References
[1] Concerning the preparation and properties of nickel
borides, see: a) C. A. Brown, H. C. Brown, J. Am.
Chem. Soc. 1963, 85, 1003–1005; b) H. C. Brown, C. A.
Brown, J. Am. Chem. Soc. 1963, 85, 1005–1006; c) C. A.
Brown, V. K. Ahuja, J. Org. Chem. 1973, 38, 2226–
2230; d) P. C. Maybury, R. W. Mitchell, M. F. Haw-
thome, J. Chem. Soc. Chem. Commun. 1974, 534–535;
e) B. Ganem, J. O. Osby, Chem. Rev. 1986, 86, 763–780;
f) Y. Okamoto, Y. Nitta, T. Imanaka, S. Teranishi, J.
Chem. Soc. Faraday Trans. 1 1979, 75, 2027–2039;
g) C. M. Belisle, Y. M. Young, B. Singaram, Tetrahe-
dron Lett. 1994, 35, 5595–5598; h) G. N. Glavee, K. J.
Klabunde, C. M. Sorensen, G. C. Hadjipanayis, Lang-
muir 1994, 10, 4726–4730; i) Z.-J. Wu, S.-H. Ge, M.-H.
Zhang, W. Li, S.-C. Mu, K.-Y. Tao, J. Phys. Chem. C:
2007, 111, 8587–8593; j) J. Geng, D. A. Jefferson,
B. F. G. Johnson, Chem. Commun. 2007, 969–971.
[2] a) S. Watanabe, S.; Ikishima, T. Matsuo, K. Yoshida, J.
Am. Chem. Soc. 2001, 123, 8402–8403; b) P. A. Jacobi,
K. Lee, J. Am. Chem. Soc. 2000, 122, 4295–4303;
c) P. A. Jacobi, K. Lee, J. Am. Chem. Soc. 1997, 119,
3409–3410; d) Y. Moritani, C. Fukushima, T. Miyagishi-
ma, H. Ohmizu, T. Iwasaki, Bull. Chem. Soc. Jpn. 1996,
69, 2281–2286; e) Y. Morimoto, K. Nishida, Y. Hayashi,
H. Shirahama. Tetrahedron Lett. 1993, 34, 5773–5776.
[3] a) D. Setamdideh, B. Khezri, Asian J. Chem. 2010, 22,
5575–5580; b) N. P. Bandgar, S. M. Nikat, P. P. Wadg-
aonker, Synth. Commun. 1995, 25, 863–869; c) A. Nose,
T. Kudo, Chem. Pharm. Bull. 1988, 36, 1529–1533;
d) A. Nose, T. Kudo, Chem. Pharm. Bull. 1981, 29,
1159–1161; e) S. Saeki, T. Oka, T. Hayakawa, K. Sakai,
Chem. Pharm. Bull. 1989, 37, 2207–2208.
[8] With respect to the composition of fresh nickel boride
as (Ni2B)2·H3, see: a) W. E. Truce, F. E. Roberta, J.
Org. Chem. 1963, 28, 961–964; b) T. G. Back, K. Yang,
H. R. Krouse, J. Org. Chem. 1992, 57, 1986–1990.
[9] Direct hydrogenation is the conventional method for
the reduction of dienes to monoolefins. This method
usually leads to the regioselectivities far from satisfac-
tory due to the harsh reaction conditions or the failure
to precisely control the amount of hydrogen, and
makes the purification tedious. For selected examples,
see: a) K. Okura, S. Matsuoka, R. Goto, M. Inoue,
Angew. Chem. 2010, 122, 339–342; Angew. Chem. Int.
Ed. 2010, 49, 329–332; b) C. Gaviglio, F. Doctorovich,
J. Org. Chem. 2008, 73, 5379–5384; c) J. Ornelas, R.
Aranzaes, L. Salmon, D. Astruc, Chem. Eur. J. 2008,
14, 50–64; d) K. Suenaga, S. Kajiwara, S. Kuribayashi,
T. Handa, H. Kigoshi, Bioorg. Med. Chem. Lett. 2008,
18, 3902–3905; e) J. Dupont, P. A. Suarez, A. P Um-
pierre, R. F. J. Souza, J. Braz. Chem. Soc. 2000, 11, 293–
297; f) T. Mizugaki, M. Ooe, K. Ebitani, K. Kaneda, J.
Mol. Cat. A: Chem. 1999, 145, 329–333; g) M. Murata,
Y. Tanaka, T. Mizugaki, K. Ebitani, K. Kaneda, Chem.
Lett. 2005, 34, 272–273; h) P. P. Zweni, H. Alper, Adv.
Synth. Catal. 2006, 348, 725–731.
[10] For selected references concerning 3-deoxygenation of
glycals, see: a) N. Greenspoon, E. Keinan, J. Org.
Chem. 1988, 53, 3723–3731; b) M. Oshima, I. Shimizu,
A. Yamamoto, Organometallics 1991, 10, 1221–1223;
c) M. Okabe, R. C. Sun, Tetrahedron Lett. 1989, 30,
2203–2206.
[4] A. S. Demir, I. M. AKHmedov, ꢃ. Sesenoglu, Turk J.
[11] Concerning a similar mechanism of the NaBH4-Cu2Cl2
reductive system, see: M. Narisada, I. Horibe, F. Wata-
nabe, K. Takeda J. Org. Chem. 1989, 54, 5308–5313.
[12] For related examples about allylation reactions involv-
ing p-allylnickel complexes substituted with an elec-
tron-donating group at the 1-position, see: a) J. R.
Johnson, P. S. Tully, P. B. Mackenzie, M. Sabat, J. Am.
Chem. Soc. 1991, 113, 6172–6177; b) B. A. Grisso, J. R.
Johnson, P. B. Mackenzie, J. Am. Chem. Soc. 1992, 114,
5160–5165.
Chem. 1999, 23, 123–126.
[5] B. Das, H. Holla, Y. Srinivas, K. Venkateswarlu, Indian
J. Heterocycl. Chem. 2007, 17, 1–6.
[6] a) W. E. Truce, F. M. Perry, J. Org. Chem. 1965, 30,
1316–1317; b) J. Schut, J. B. F. N. Engberts, H. Wynberg,
Synth. Commun. 1972, 2, 415–421; c) R. B. Boar, D. W.
Hawkins, J. F. McGhie, D. H. R. Barton, J. Chem. Soc.
Perkin Trans. 1 1973, 654–656; d) M. R. Euerby, R. D.
Waigh, Synth. Commun. 1986, 16, 779–784; e) F. S., Jr.
Guziec, L. M. Wasmund, Tetrahedron Lett. 1990, 31, 23.
[7] a) D. J. Krysan, in: Comprehensive Organometallic
Chemistry II, (Eds.: E. W. Abel, F. G. A. Stone, G. Wil-
kinson), Elsevier, Oxford, UK, 1995, Vol. 12, p 959;
[13] Other mechanisms cannot be ruled out at this stage. A
single electron transfer (SET) mechanism might be a
choice, just like that of the Birch reduction.
3324
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 3319 – 3324