344
X. Wu et al. / Tetrahedron Letters 53 (2012) 342–344
Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, The
Chemistry of Heterocyclic Compounds; Wiley: New York, 2002; Vol. 59, pp 1–81;
(b) Feuer, H. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, 2nd ed.;
John Wiley & Sons: Hoboken, NJ, 2008; For reviews on nucleophilic additions to
nitrones see: (c) Merino, P.; Franco, S.; Merchán, F. L.; Tejero, T. Synlett 2000, 442–
454; (d) Cardona, F.; Goti, A. Angew. Chem., Int. Ed. 2005, 44, 7832–7835; (e) Brandi,
A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Eur. J. 2009, 15, 7808–7821.
3. For a review, see: Pinho e Melo, T. M. V. D. Curr. Org. Chem. 2009, 13, 1406–1431.
4. For reviews on the synthetic applications of allenes, see: (a) Lu, X.; Zhang, C.; Xu,
Z. Acc. Chem. Res. 2001, 34, 535–544; (b) Methot, J. L.; Roush, W. R. Adv. Synth.
Catal. 2004, 346, 1035–1050; (c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008,
37, 1140–1152; (d) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102–3116;
(e) Marinetti, A.; Voituriez, A. Synlett 2010, 2005, 174–194; (f) Ma, S. M. Chem.
Rev. 2005, 105, 2829–2871.
5. For selected examples, see: (a) Padwa, A.; Carter, S. P.; Chiacchio, U.; Kline, D. N.
Tetrahedron Lett. 1986, 27, 2683–2686; (b) Padwa, A.; Kline, D. N.; Koehler, K. F.;
Matzinger, M.; Venkatramanan, M. K. J. Org. Chem. 1987, 52, 3909–3917; (c)
Padwa, A.; Matzinger, M.; Tomioka, Y.; Venkatramanan, M. K. J. Org. Chem. 1988,
53, 955–963; (d) Padwa, A.; Craig, S. P.; Chiacchio, U.; Kline, D. N. J. Org. Chem.
1988, 53, 2232–2238; (e) Padwa, A.; Kline, D. N.; Norman, B. H. J. Org. Chem.
1989, 54, 810–817; (f) Padwa, A.; Bullock, W. H.; Kline, D. N.; Perumattam, J. J.
Org. Chem. 1989, 54, 2862–2869; (g) Padwa, A.; Norman, B. H.; Perumattam, J.
Tetrahedron Lett. 1989, 30, 663–666.
Scheme 3. At high temperature, the allenoate and nitrone carry out
[3+2] cycloaddition to give methylene tetrahydroimidazo
[1,5-b]isoxazol-4(2H)-one A. Due to the thermal instability of A, a
heterolytic cleavage of the N–O bond of A generates a zwitterionic
intermediate B. Subsequent isomerization gives rise to the inter-
mediate C. It undergoes rearrangement to lead to the formation
of the final product 3, which was stabilized by the hydrogen bond
between amine and hydroxyl.
In conclusion, a simple and convenient strategy for the synthe-
sis of functionalized imidazolidinones via sequential [3+2] cycload-
dition/rearrangement reaction of imidazolone nitrones and
allenoates has been developed. Using this method a range of func-
tionalized imidazolidinones have been prepared from readily avail-
able starting materials. A variety of allenoates with various
substituents are tolerated under the reaction conditions.
Acknowledgments
6. See recent example of 1,3-dipolar cycloaddition of imidazolone nitrones: (a)
Baldwin, S. W.; Long, A. Org. Lett. 2004, 6, 1653–1656; (b) Aouadi, K.; Vidal, S.;
Msaddek, M.; Praly, J.-P. Synlett 2006, 3299–3303; (c) Pernet-Poil-Chevrier, A.;
Cantagrel, F.; Le Jeune, K.; Philouze, C.; Chavant, P. Y. Tetrahedron: Asymmetry
2006, 17, 1969–1974; (d) Aouadi, K.; Jeanneau, E.; Msaddek, M.; Praly, J.-P.
Synthesis 2007, 3399–3405; (e) Aouadi, K.; Jeanneau, E.; Msaddek, M.; Praly, J.-P.
Tetrahedron: Asymmetry 2008, 19, 1145–1152; (f) Dai, X.; Miller, M. W.;
Stamford, A. W. Org. Lett. 2010, 12, 2718–2721.
This work was financially supported by the startup research
funding of China Agricultural University, Chinese Universities Sci-
entific Fund (Nos. 2011JS029 and 2011JS031), the National Scien-
tific and Technology Supporting Program of China (No.
2011BAE06B05-5), the National Natural Science Foundation of Chi-
na (No. 21172253), the Key Technologies R&D Program of China,
and Nutriechem Company.
7. General procedure for sequential [3+2] cycloaddition/rearrangement: The nitrone
1a (0.125 mmol, 1 equiv) was added to a solution of allenoate 2a (0.625 mmol,
5 equiv) in 2 mL of toluene at room temperature, then the resulting mixture was
stirred in the refluxing toluene for 48 h. The reaction mixture was concentrated
under reduced pressure. The residue was purified by flash column
chromatography (ethyl acetate/hexanes = 1:2) to give the corresponding
product 3aa as a colorless oil. IR (film) mmax 2962, 2930, 2873, 1736, 1701,
1585, 1456, 1401, 1365, 1298, 1260, 1221, 1181, 1149, 1095, 1029, 956, 921,
Supplementary data
Supplementary data associated with this article can be found, in
801, 708, 623, 582, 553, 496 cmÀ1 1H NMR (300 MHz, CDCl3) d 7.36–7.17 (m,
;
10H), 6.24 (s, 1H), 5.03 (d, J = 1.0 Hz, 1H), 4.68–4.51 (m, 2H), 4.12–3.93 (m, 2H),
3.45–3.29 (m, 2H), 1.22 (d, J = 3.3 Hz, 6H), 1.11 (t, J = 7.1 Hz, 3H); 13C NMR
(75 MHz, CDCl3) d 172.9, 162.2, 160.2, 140.5, 136.6, 135.6, 130.6, 128.7, 128.0,
127.9, 127.8, 126.8, 126.0, 83.5, 78.7, 61.5, 44.3, 42.4, 25.6, 25.5, 14.0; HRMS
References and notes
1. (a) Gothelf, K. V. In Cycloaddition Reactions in Organic Synthesis; Kobayashi, S.,
Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp 211–245;
(b)Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry—Toward
Heterocycles and Natural Products; Padwa, A., Pearson, W. H., Eds.; John Wiley
and Sons: Hoboken, NJ, 2003; (c) Hashimoto, T.; Maruoka, K. In Handbook of
Cyclization Reactions; Ma, S., Ed.; Wiley-VCH: Weinheim, Germany, 2009; pp 87–
168.
(ESI) calcd for C25H28N2O4 [M]+ 420.2044, found 420.2040.
+
8. For a highly bioactive 2,3,5-substituted imidazolidin-4-one, which is b-secretase
inhibitor, see: Barrow, J. C.; Rittle, K. E.; Ngo, P. L.; Selnick, H. G.; Graham, S. L.;
Pitzenberger, S. M.; McGaughey, G. B.; Colussi, D.; Lai, M.-T.; Huang, Q.;
Tugusheva, K.; Espeseth, A. S.; Simon, A. J.; Munshi, S. K.; Vacca Jo, P.
ChemMedChem 2007, 2, 995–999.
2. For reviews on 1,3-dipolar cycloadditions of nitrones, see: (a) Jones, R. C. F.;
Martin, J. N. In Padwa, A., Pearson, W. H., Eds.; Synthetic Applications of 1,3-