0.2 mmol) and 0.95 mg of CuTC (5 mol%) as the catalyst. The
reaction was kept at 90 ◦C instead of 100 ◦C (Table 3). The major
diastereoisomer (5S,11R,14R)-5a was isolated in 73% yield (28 mg,
5 Configurationally stable methano-Tro¨ger bases can be obtained upon
double protonation or introduction of substituents on the aromatic
framework. See: A. Greenberg, N. Molinaro and M. Lang, J. Org.
Chem., 1984, 49, 1127; A. Tatiboue¨t, M. Demeunynck, C. Andraud,
A. Collet and J. Lhomme, Chem. Commun., 1999, 161; D. A. Lenev,
K. A. Lyssenko, D. G. Golovanov, V. Buss and R. G. Kostyanovsky,
Chem.–Eur. J., 2006, 12, 6412.
20
ee 90%), [a]D = +198 (c 0.02, CH2Cl2). CSP-HPLC separation:
(S,S)-Whelk-O 1 column, n-hexane/i-PrOH 99 : 1, 0.7 mL min-1,
23 ◦C, l = 254 nm; tR (5S,11R,14R) = 9.0 min, tR (5R,11S,14S) =
10.2 min.
6 A. Sharma, L. Guene´e, J. V. Naubron and J. Lacour, Angew. Chem.,
Int. Ed., 2011, 50, 3677.
7 The presence of two different substituents around the diazo moiety
leads to the formation of a carbon stereocenter on the ethano-bridge,
and hence the formation of diastereomers.
Acknowledgements
8 (a) G. D. Allred and L. S. Liebeskind, J. Am. Chem. Soc., 1996, 118,
2748; (b) I. Paterson and J. Man, Tetrahedron Lett., 1997, 38, 695; (c) S.
Zhang, D. Zhang and L. S. Liebeskind, J. Org. Chem., 1997, 62, 2312.
9 (a) M. Perez, M. Fananas-Mastral, P. H. Bos, A. Rudolph, S. R.
Harutyunyan and B. L. Feringa, Nat. Chem., 2011, 3, 377; (b) H. Li, A.
He, J. R. Falck and L. S. Liebeskind, Org. Lett., 2011, 13, 3682; (c) H.
Li, A. He, R. Falck John and S. Liebeskind Lanny, Org. Lett., 2011,
13, 3682; (d) J.-B. Langlois and A. Alexakis, Angew. Chem., Int. Ed.,
2011, 50, 1877; (e) W.-W. Jin, W.-M. Du, Q. Yang, H.-F. Yu, J.-P. Chen
and Z.-K. Yu, Org. Lett., 2011, 13, 4272; (f) D. Hobuss, A. Baro, K. V.
Axenov, S. Laschat and W. Frey, Eur. J. Inorg. Chem., 2011, 384; (g) J.
B. Feltenberger and R. P. Hsung, Org. Lett., 2011, 13, 3114; (h) M.
Welker, S. Woodward, L. F. Veiros and M. J. Calhorda, Chem.–Eur.
J., 2010, 16, 5620; (i) M. Wang and Z. Lin, Organometallics, 2010, 29,
3077; (j) M. Tissot, D. Muller, S. Belot and A. Alexakis, Org. Lett.,
2010, 12, 2770; (k) A. Guzman-Martinez and A. H. Hoveyda, J. Am.
Chem. Soc., 2010, 132, 10634; (l) L. M. Bishop, R. E. Roberson, R. G.
Bergman and D. Trauner, Synthesis, 2010, 2233.
10 (a) J. A. Vanecko, H. Wan and F. G. West, Tetrahedron, 2006, 62,
1043; (b) M. P. Doyle, M. A. McKervey and T. Ye, Modern catalytic
methods for organic synthesis with diazo compounds: from cyclopropanes
to ylides, Wiley, New York, 1998; (c) J. S. Clark, Nitrogen, Oxygen and
Sulfur Ylide Chemistry: A Practical Approach, Oxford University Press,
Oxford, 2002, pp. 1; (d) A. Padwa and S. F. Hornbuckle, Chem. Rev.,
1991, 91, 263; (e) E. Nakamura, N. Yoshikai and M. Yamanaka, J. Am.
Chem. Soc., 2002, 124, 7181.
11 For information, this reaction had afforded 5a (70%) with a moderate
diastereoselectivity (dr 5 : 1) using 1 mol% of Rh2(OAc)4. The transfer
of chirality had been low in this case (ee 10%). No change was observed
with 5 mol% of catalyst (Table 2).
12 CuTC was mentioned once in the context of carbene self-dimerization.
Fischer complexes were used as the substrates and a transmetalation
from Cr to Cu was evinced: J. C. del Amo, M. J. Mancheno,
M. Gomez-Gallego and M. A. Sierra, Organometallics, 2004, 23,
5021.
13 At the new carbon stereogenic centers, results indicate that large
and small substituents replace preferentially the pro-(S) and pro-(R)
hydrogen atoms of the parent (S,S)-1, respectively (and vice versa for
(R,R)-1).
14 In the presence of either 1 or 5 mol% of Rh2(OAc)4, the reaction
of enantiopure 2 provides no product with 4b or essentially racemic
material with diazo 4a and 4d (eemax 10%).
We thank the University of Geneva and the Swiss NSF for financial
support. We also acknowledge the contributions of the Sciences
Mass Spectrometry (SMS) platform at the Faculty of Sciences,
University of Geneva.
Notes and references
1 (a) Y. Hamada and S. Mukai, Tetrahedron: Asymmetry, 1996, 7, 2671;
(b) Y. Ishida, H. Ito, D. Mori and K. Saigo, Tetrahedron Lett., 2005,
46, 109; (c) D. A. Lenev, D. G. Golovanov, K. A. Lyssenko and R.
G. Kostyanovsky, Tetrahedron: Asymmetry, 2006, 17, 2191; (d) M.
Faroughi, A. C. Try, J. Klepetko and P. Turner, Tetrahedron Lett., 2007,
48, 6548; (e) M. Faroughi, A. C. Try and P. Turner, Acta Cryst., 2008,
E64, o39; (f) C. Michon, A. Sharma, G. Bernardinelli, E. Francotte
and J. Lacour, Chem. Commun., 2010, 46, 2206; (g) B. Bhayana and M.
R. Ams, J. Org. Chem., 2011, 76, 3594.
2 (a) J. Tro¨ger, J. Prakt. Chem., 1887, 36, 225; (b) S. Sergeyev, Helv. Chim.
Acta, 2009, 92, 415; (c) B. Dolensky, J. Elguero, V. Kral, C. Pardo and
M. Valik, Adv. Heterocycl. Chem., 2007, 93, 1; (d) M. Demeunynck
and A. Tatibouet, Prog. Heterocycl. Chem., 1999, 11, 1; (e) C. Pardo, I.
Alkorta and J. Elguero, Tetrahedron: Asymmetry, 2006, 17, 191; (f) V.
Galasso, D. Jones and A. Modelli, Chem. Phys., 2003, 288, 33; (g) A.
Aamouche, F. J. Devlin and P. J. Stephens, J. Am. Chem. Soc., 2000,
122, 2346; (h) S. H. Wilen, J. Z. Qi and P. G. Williard, J. Org. Chem.,
1991, 56, 485; (i) T. R. Miller and E. C. Wagner, J. Am. Chem. Soc.,
1941, 63, 832; (j) M. A. Spielman, J. Am. Chem. Soc., 1935, 57, 583.
3 (a) A. Lutzen, T. Weilandt, U. Kiehne, J. Bunzen and G. Schnakenburg,
Chem.–Eur. J., 2010, 16, 2418; (b) S. Sergeyev, D. Didier, V. Boitsov, A.
Teshome, I. Asselberghs, K. Clays, C. M. L. V. Velde, A. Plaquet and
B. Champagne, Chem.–Eur. J., 2010, 16, 8181; (c) K. Warnmark, C. S.
Arribas, O. F. Wendt, A. P. Sundin, C. J. Carling, R. Y. Wang and R. P.
Lemieux, Chem. Commun., 2010, 46, 4381; (d) W. Wang, X. Du, Y. L.
Sun, B. Tan, Q. F. Teng, X. J. Yao and C. Y. Sue, Chem. Commun., 2010,
46, 970; (e) B. Dolensky, A. Tatar, J. Cejka and V. Kral, Org. Lett., 2010,
12, 1872; (f) H. Wu, Y. Wan, R. Yuan, W. C. Zhang, Y. H. Shi, W. Lin,
W. Yin, R. C. Bo and J. J. Shi, Tetrahedron, 2010, 66, 3405; (g) A. C. Try,
M. D. H. Bhuiyan, K. X. Zhu and P. Jensen, Eur. J. Org. Chem., 2010,
4662; (h) E. B. Veale and T. Gunnlaugsson, J. Org. Chem., 2010, 75,
5513; (i) S. Satishkumar and M. Periasamy, Tetrahedron: Asymmetry,
2009, 20, 2257; (j) D. Schroder, A. Revesz, T. A. Rokob, M. Havlik and
B. Dolensky, Angew. Chem. Int. Ed., 2011, 50, 2401; (k) A. Corma, E.
P. Poli, E. E. Merino, U. Diaz and D. Brunel, J. Phys. Chem. C, 2011,
115, 7573; (l) R. Abonia, F. Cuenu, A. Bolanos and A. Cabrera, J.
Organomet. Chem., 2011, 696, 1834; (m) B. Dolensky, V. Parchansky,
P. Matejka, M. Havlik, P. Bour and V. Kral, J. Mol. Struct., 2011, 996,
69; (n) A. C. Try, Q. M. Malik, S. Ijaz and D. C. Craig, Tetrahedron,
2011, 67, 5798.
15 In all likelihood, the chirality transfer occurs with retention of
configuration as in the case of Rh2(OAc)4.
16 A single recrystallization of 5p in acetone afforded the adduct in 99%
ee.
17 Interestingly, this trend is opposite to that observed with arylester
diazo derivatives under Rh2(OAc)4 catalysis. See reference 6 for further
information.
4 (a) O. Trapp, G. Trapp, J. W. Kong, U. Hahn, F. Vo¨gtle and V. Schurig,
Chem.–Eur. J., 2002, 8, 3629; (b) O. Trapp and V. Schurig, J. Am. Chem.
Soc., 2000, 122, 1424.
18 For the Rh(II)-catalyzed reactions, 1 mol% of Rh2(OAc)4 is actually
sufficient to reach full conversion. 5 mol% of catalyst was used to allow
a direct comparison with copper-mediated reactions.
This journal is
The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 966–969 | 969
©