ORGANIC
LETTERS
2012
Vol. 14, No. 3
768–771
Direct Catalytic Azidation of Allylic
Alcohols
Magnus Rueping,* Carlos Vila, and Uxue Uria
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074
Aachen, Germany
Received December 11, 2011
ABSTRACT
A direct catalytic azidation of primary, secondary, and tertiary allylic alcohols has been developed. This new azidation reaction affords the
corresponding allylic azides in high to excellent yields and regioselectivities. The reaction provides straightforward access to allylic azides that
are valuable intermediates in organic synthesis, including the preparation of primary amines or 1,2,3-triazole derivatives.
The interest in the synthesis of allylic amines has
grown significantly due to the importance of these
compounds as building blocks for the synthesis of
various therapeutic agents,1 amino acids2 and natural
products.3 Due to their readily availability, allylic
alcohols are preferred substrates for the synthesis of
allylic amines. Substitution of the alcohol moiety by a
nitrogen nucleophile requires normally preactivation
of the alcohol in the form of a better leaving group
such as halide, carboxylate, phosphate, carbonate or
related compounds.4 Thus, direct catalytic substitu-
tion of allylic alcohols is of great interest for organic
synthesis in terms of atom-economy and environmen-
tal concerns.5
In this context, several methods have been reported
for the direct allylic amination using Brønsted acids,6
iodine,7 and various metal based catalysts.8 Despite a
large number of reported methodologies for the direct
amination of allylic alcohols,6À8 the related direct
azidation remains still underexplored.9 To date, only
(6) Sanz, R.; Martinez, A.; Miguel, D.; Alvarez-Gutierrez, J. M.;
Rodriguez, F. Adv. Synth. Catal. 2006, 348, 1841.
(7) Wu, W.; Rao, W.; Er, Y. Q.; Loh, J. K.; Poh, C. Y.; Chan,
P. W. H. Tetrahedron Lett. 2008, 49, 2620.
(8) For a review on Pd-catalyzed allylic amination: (a) Muzart, J.
Eur. J. Org. Chem. 2007, 3077. For bismuth-catalyzed reactions:
(b) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew.
Chem., Int. Ed. 2007, 46, 409. For molybdenium-catalyzed reactions:
(c) Yang, H.; Fang, L.; Zhang, M.; Zhu, C. Eur. J. Org. Chem. 2009, 666.
For platinum-catalyzed reactions: (e) Utsunomiya, M.; Miyamoto, Y.;
Ipposhi, J.; Ohshima, T.; Mashima, K. Org. Lett. 2007, 9, 3371. (f)
Mora, G.; Piechaczyck, O.; Houdard, R.; Mezailles, N.; Le Goff, X.-F.;
le Floch, P. Chem.;Eur. J. 2008, 14, 10047. (g) Das, K.; Shibuya, R.;
Nakahara, Y.; Germain, N.; Oshima, T.; Mashima, K. Angew. Chem.,
Int. Ed. 2011, 51, 150–154. For silver-catalyzed reactions: (h) Giner, X.;
Trillo, P.; Najera, C. J. Organomet. Chem. 2011, 696, 357. For iridium-
catalyzed reactions: (i) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira,
E. M. Angew. Chem., Int. Ed. 2007, 46, 3139. (j) Roggen, M.; Carreira,
E. M. J. Am. Chem. Soc. 2010, 132, 11917. For gold-catalyzed reactions:
(k) Guo, S.; Song, F.; Liu, Y. Synlett 2007, 964. (l) Kothandaraman, P.;
Foo, S. J.; Hong Chan, P. W. J. Org. Chem. 2009, 74, 5947. (m)
Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2010, 12, 1184. (n)
Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2011, 13, 1334. For
calcium-catalyzed reactions: (o) Haubenreisser, S.; Niggemann, M. Adv.
Synth. Catal. 2011, 354, 469.
€
(1) (a) Petranyi, G.; Ryder, N. S.; Stutz, A. Science 1984, 224, 1239.
€
(b) Stutz, A. Angew. Chem., Int. Ed. 1987, 26, 320. (c) Nanavati, S. M.;
Silverman, R. B. J. Am. Chem. Soc. 1991, 113, 9341. (d) Jakobsche, C. E.;
Peris, G.; Miller, S. J. Angew. Chem., Int. Ed. 2008, 47, 6707. (e) Blacker,
A. J.; Roy, M.; Hariharan, S.; Upare, A.; Jagtap, A.; Wankhede, K.;
Mishra, S. K.; Dube, D.; Bhise, S.; Vishwasrao, S.; Kadam, N. Org.
Proc. Res. Dev. 2010, 14, 1364.
(2) (a) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.;
Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301. (b) Burgess, K.; Liu,
L. T.; Pal, B. J. Org. Chem. 1993, 58, 4758. (c) Chen, Y. K.; Lurain, A. E.;
Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225.
(3) For a review, see: (a) Trost, B. M.; Crawley, M. L. Chem. Rev.
2003, 103, 2921. For selected examples, see: (b) Kondo, H.; Nakai, H.;
Goto, T. Tetrahedron 1973, 29, 1801. (c) Brosius, A. D.; Overman, L. E.;
Schwink, L. J. Am. Chem. Soc. 1999, 121, 700. (d) Nakanishi, M.; Mori,
M. Angew. Chem., Int. Ed. 2002, 41, 1934.
(4) (a) Tsuji, J. Transition Metal reagents and Catalysis; Wiley-VCH:
Weinheim, 2000. (b) Trost, B. M.; Lee, C. In Catalytic Asymmetric
Synthesis, 2nd ed.; Wiley-VCH: Weinheim, 2000.
€
(9) (a) Organic Azides Syntheses and Applications; Brase, S., Banert,
K., Eds.; John Wiley & Sons Ltd.: Chichester, 2010. For the direct azidation
of allylic alcohols with NaN3 and stoichiometric amounts of BF3 Et2O, see:
3
(b) Sampath Kumar, H. M.; Subba Reddy, B. V.; Anjaneyulu, S.; Yadav,
J. S. Tetrahedron Lett. 1998, 39, 7385. Mo-catalysis: (c) Malkov, A. V.;
Spoor, P.; Vinader, V.; Kocovsky, P. J. Org. Chem. 1999, 64, 5308.
Acidic ionic liquid mediated azidations: (d) Hajipour, A. R.; Rajaei, A.;
Ruoho, A. E. Tetrahedron Lett. 2009, 50, 708.
(5) For reviews, see: (a) Muzart, J. Tetrahedron 2005, 61, 4179.
(b) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647.
r
10.1021/ol203310h
Published on Web 01/18/2012
2012 American Chemical Society