ORGANIC
LETTERS
2012
Vol. 14, No. 3
672–675
Visible Light Photoredox Catalysis:
Generation and Addition of
N-Aryltetrahydroisoquinoline-Derived
R-Amino Radicals to Michael Acceptors
Paul Kohls,† Deepak Jadhav,†,‡ Ganesh Pandey,*,‡ and Oliver Reiser*,†
€
€
Institut fu€r Organische Chemie, Universitat Regensburg, Universitatsstrasse 31,
93053 Regensburg, Germany, and Division of Organic Chemistry, National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune-411 008, India
Oliver.Reiser@chemie.uni-regensburg.de; gp.pandey@ncl.res.in
Received October 23, 2011
ABSTRACT
The photoredox-catalyzed coupling of N-aryltetrahydroisoquinoline and Michael acceptors was achieved using Ru(bpy)3Cl2 or [Ir(ppy)2-
(dtb-bpy)]PF6 in combination with irradiation at 455 nm generated by a blue LED, demonstrating the trapping of visible light generated R-amino
radicals. While intermolecular reactions lead to products formed by a conjugate addition, in intramolecular variants further dehydrogenation occurs,
leading directly to 5,6-dihydroindolo[2,1-a]tetrahydroisoquinolines, which are relevant as potential immunosuppressive agents.
In recent years, there has been increasing interest in the
use of visible light to drive organic reactions because of its
infinite availability, ease of handling, and promising
application in industry.1 Generally, photosensitizers or
photocatalysts are required in such processes due to the
inability of many organic molecules to absorb in the range
between 400 and 800 nm.2 Photoredoxcatalysts induce
exchange of electrons with interacting substrates owing to
their well-defined redox potential differences and hence
generate potentially active ion radicals. The unique fea-
tures of these photosensitized and photocatalyzed
reactions are associated with the generation and subse-
quent facile cleavage of radical ions into radicals and ions,
providing the basis for the development of many new
and useful organic synthetic conversions.3 In particular,
one-electron oxidation of tertiary amines is known to
produce planar radical cations, which in polar solvents
(3) (a) DeLaive, P. J.; Lee, J. T.; Sprintschnik, H. W.; Abruna, H.;
Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1977, 99, 7094. (b)
Nicewicz, D., A.; MacMillan, D. W. C. Science 2008, 322, 77. (c) Pham,
P. V.; Nagib, D. A; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2011,
50, 6119. (d) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am.
Chem. Soc. 2008, 130, 12886. (e) Du, J.; Ruiz Espelt, L.; Guzei, I. A.;
Yoon, T. P. Chem. Sci. 2011, 2, 2115. (f) Narayanam, J. M. R.; Tucker,
J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756. (g) Dai,
C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nature Chem. 2011, 3,
†
€
Universitat Regensburg.
‡ National Chemical Laboratory.
(1) Leading reviews: (a) Narayanam, J. M. R.; Stephenson, C. R. J.
€
€
140. (h) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem.,
Chem. Soc. Rev. 2011, 40, 102. (b) Yoon, T. P.; Ischay, M. A.; Du, J. N.
Nature Chem. 2010, 2, 527. (c) Teply, F. Collect. Czech. Chem. Commun.
2011, 76, 859. (d) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785.
(2) (a) Srinivasan, R. J. Am. Chem. Soc. 1963, 85, 3048. (b) Salomon,
R. G.; Kochi, J. K. J. Am. Chem. Soc. 1974, 96, 1137. (c) Kochi, J. K.
Angew. Chem., Int. Ed. 1988, 27, 1227.
Int. Ed. 2010, 123, 981.
ꢀ
(4) (a) Lewis, F. D.; Ho, T.-I.; Simpson, J. T. J. Org. Chem. 1981, 46,
1077. (b) Lewis, F. D.; Ho, T.-I.; Simpson, J. T. J. Am. Chem. Soc. 1982,
104, 1924. (c) Lewis, F. D. Acc. Chem. Res. 1986, 19, 401. (d) Chow,
Y. L.; Danen, W. C.; Nelsen, S. F.; Rosenblatt, D. H. Chem. Rev. 1978,
78, 243.
r
10.1021/ol202857t
Published on Web 01/19/2012
2012 American Chemical Society