RSC Advances
Paper
N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross,
J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt,
Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian,
G. T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell, Energy
Environ. Sci., 2014, 7, 130–189.
Int. Ed., 2008, 47, 1127–1129; (c) Z. Zhang, S. Hu, J. Song,
W. Li, G. Yang and B. Han, ChemSusChem, 2009, 2, 234–238.
9 N. D. McNamara and J. C. Hicks, ChemSusChem, 2014, 7,
1114–1124.
10 P. Munshi, A. D. Main, J. C. Linehan, C.-C. Tai and
P. G. Jessop, J. Am. Chem. Soc., 2002, 124, 7963–7971.
2 For CCU, see: (a) Z.-Z. Yang, L.-N. He, J. Gao, A.-H. Liu and
B. Yu, Energy Environ. Sci., 2012, 5, 6602–6639; (b) 11 (a) C.-C. Tai, T. Chang, B. Roller and P. G. Jessop, Inorg.
A.-H. Liu, R. Ma, C. Song, Z.-Z. Yang, A. Yu, Y. Cai,
L.-N. He, Y.-N. Zhao, B. Yu and Q.-W. Song, Angew. Chem.,
Int. Ed., 2012, 51, 11306–11310; (c) Y.-N. Li, L.-N. He,
A. H. Liu, X.-D. Lang, Z.-Z. Yang, B. Yu and C.-R. Luan,
Green Chem., 2013, 15, 2825–2829; (d) S. H. Kim, K. H. Kim
Chem., 2003, 42, 7340–7341; (b) R. J. Perry, T. A. Grocela-
Rocha, M. J. O'Brien, S. Genovese, B. R. Wood, L. N. Lewis,
H. Lam, G. Soloveichik, M. Rubinsztajn, S. Kniajanski,
S. Draper, R. M. Enick, J. K. Johnson, H.-b. Xie and
D. Tapriyal, ChemSusChem, 2010, 3, 919–930.
and S. H. Hong, Angew. Chem., Int. Ed., 2014, 53, 771–774; 12 P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert and
(e) S. Zhang, Y.-N. Li, Y.-W. Zhang, L.-N. He, B. Yu, C. L. Liotta, Nature, 2005, 436, 1102.
Q.-W. Song and X.-D. Lang, ChemSusChem, 2014, 7, 1484– 13 For superbase and proton donor systems, see: (a) C. Wang,
1489.
H. Luo, X. Luo, H. Li and S. Dai, Green Chem., 2010, 12,
2019–2023; (b) C. Wang, H. Luo, D. Jiang, H. Li and S. Dai,
Angew. Chem., 2010, 122, 6114–6117; (c) Z.-Z. Yang,
L.-N. He, Y.-N. Zhao, B. Li and B. Yu, Energy Environ. Sci.,
2011, 4, 3971–3975.
3 For fuel-related products of CO2 hydrogenation, see: (a)
Y.-N. Li, R. Ma, L.-N. He and Z.-F. Diao, Catal. Sci. Technol.,
2014, 4, 1498–1512; (b) K. Beydoun, T. vom Stein,
J. Klankermayer and W. Leitner, Angew. Chem., Int. Ed.,
2013, 52, 9554–9557; (c) Y. Li, X. Fang, K. Junge and 14 G. Cui, J. Zheng, X. Luo, W. Lin, F. Ding, H. Li and C. Wang,
M. Beller, Angew. Chem., Int. Ed., 2013, 52, 9568–9571; (d) Angew. Chem., 2013, 125, 10814–10818.
B. Yu, H. Zhang, Y. Zhao, S. Chen, J. Xu, C. Huang and 15 B. Gurkan, B. F. Goodrich, E. M. Mindrup, L. E. Ficke,
Z. Liu, Green Chem., 2013, 15, 95–99; (e) B. Yu, Y. Zhao,
H. Zhang, J. Xu, L. Hao, X. Gao and Z. Liu, Chem.
Commun., 2014, 50, 2330–2333; (f) J. H. Kwak, L. Kovarik
and J. Szanyi, ACS Catal., 2013, 3, 2094–2100.
4 For carbon neutral cycle, see: (a) G. A. Olah, Angew. Chem.,
Int. Ed., 2013, 52, 104–107; (b) G. A. Olah, A. Goeppert and
G. K. S. Prakash, J. Org. Chem., 2009, 74, 487–498; (c)
G. A. Olah, Angew. Chem., Int. Ed., 2005, 44, 2636–2639.
5 For formic acid as hydrogen carrier, see: (a) H.-L. Jiang,
S. K. Singh, J.-M. Yan, X.-B. Zhang and Q. Xu,
M. Massel, S. Seo, T. P. Senle, H. Wu, M. F. Glaser,
J. K. Shah, E. J. Maginn, J. F. Brennecke and
W. F. Schneider, J. Phys. Chem. Lett., 2010, 1, 3494–3499.
16 (a) M. Kim and J.-W. Park, Chem. Commun., 2010, 46, 2507–
2509; (b) P. K. Koech, J. Zhang, I. V. Kutnyakov,
L. Cosimbescu, S.-J. Lee, M. E. Bowden, T. D. Smurthwaite
and D. J. Heldebrant, RSC Adv., 2013, 3, 566–572.
17 (a) D. J. Heldebrant and P. G. Jessop, J. Am. Chem. Soc., 2003,
125, 5600–5601; (b) Y.-N. Li, J.-L. Wang and L.-N. He,
Tetrahedron Lett., 2011, 52, 3485–3488.
ChemSusChem, 2010, 3, 541–549; (b) S. Enthaler, 18 Z.-Z. Yang, L.-N. He, Y.-N. Zhao and B. Yu, Environ. Sci.
ChemSusChem, 2008, 1, 801–804; (c) J. F. Hull, Y. Himeda, Technol., 2013, 47, 1598–1605.
W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, 19 Z.-Z. Yang, Q.-W. Song and L.-N. He, Capture and utilization
J. T. Muckerman and E. Fujita, Nat. Chem., 2012, 4, 383–388.
6 For base-promoted CO2 hydrogenation, see: (a) R. Tanaka,
of carbon dioxide with polyethylene glycol, Springer,
Heidelberg, New York, Dordrecht, London, 2012, p. 78.
M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2009, 131, 20 D. J. Heldebrant, P. K. Koech, M. T. C. Ang, C. Liang,
14168–14169; (b) P. G. Jessop, Y. Hsiao, T. Ikariya and
R. Noyori, J. Am. Chem. Soc., 1996, 118, 344–355; (c) C. Das
J. E. Rainbolt, C. R. Yonker and P. G. Jessop, Green Chem.,
2010, 12, 713–721.
´
Neves Gomes, O. Jacquet, C. Villiers, P. Thuery, 21 C.-C. Tai, J. Pitts, J. C. Linehan, A. D. Main, P. Munshi and
M. Ephritikhine and T. Cantat, Angew. Chem., Int. Ed., P. G. Jessop, Inorg. Chem., 2002, 41, 1606–1614.
2012, 51, 187–190; (d) H. Hayashi, S. Ogo, T. Abura and 22 (a) C. Yin, Z. Xu, S. Yang, S. Ng, K. Wong, Z. Lin and C. Lau,
S. Fukuzumi, J. Am. Chem. Soc., 2003, 125, 14266–14267; (e)
T. J. Schmeier, G. E. Dobereiner, R. H. Crabtree and
N. Hazari, J. Am. Chem. Soc., 2011, 133, 9274–9277; (f)
Organometallics, 2001, 20, 1216–1222; (b) Y. Himeda,
N. Onozawa-Komatsuzaki, H. Sugihara, H. Arakawa and
K. Kasuga, Organometallics, 2004, 23, 1480–1483.
Z. Xu, N. D. McNamara, G. T. Neumann, W. F. Schneider 23 E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, J. Am. Chem.
and J. C. Hicks, ChemCatChem, 2013, 5, 1769–1771; (g) Soc., 2002, 124, 926–927.
G. A. Filonenko, M. P. Conley, C. Coperet, M. Lutz, 24 J. C. Tsai and K. M. Nicholas, J. Am. Chem. Soc., 1992, 114,
´
E. J. M. Hensen and E. A. Pidko, ACS Catal., 2013, 3, 2522–
2526.
7 T. Schaub and R. A. Paciello, Angew. Chem., Int. Ed., 2011, 50,
7278–7282.
8 (a) S. Wesselbaum, U. Hintermair and W. Leitner, Angew.
Chem., Int. Ed., 2012, 51, 8585–8588; (b) Z. Zhang, Y. Xie,
W. Li, S. Hu, J. Song, T. Jiang and B. Han, Angew. Chem.,
5117–5124.
25 Y. Musashi and S. Sakaki, J. Am. Chem. Soc., 2002, 124, 7588–
7603.
26 (a) E. Balaraman, C. Gunanathan, J. Zhang, L. J. W. Shimon
and D. Milstein, Nat. Chem., 2011, 3, 609–614; (b) Z. Han,
L. Rong, J. Wu, L. Zhang, Z. Wang and K. Ding, Angew.
Chem., Int. Ed., 2012, 51, 13041–13045.
50002 | RSC Adv., 2014, 4, 49995–50002
This journal is © The Royal Society of Chemistry 2014