H. Benzeid et al. / C. R. Chimie 15 (2012) 79–85
85
4.6. Compounds preparation
References
[1] F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75 (2006) 333.
[2] M. Lindgren, P. Hammarstrom, FEBS J. 277 (2010) 1380.
[3] A. Hawe, M. Sutter, W. Jiskoot, Pharm. Res. 25 (2008) 1487.
[4] A. Nordberg, Lancet Neurol. 3 (2004) 519.
[5] M. Higuchi, N. Iwata, Y. Matsuba, K. Sato, K. Sasamoto, T.C. Saido, Nat.
Neurosci. 8 (2005) 527.
[6] C.A. Mathis, B.J. Lopresti, W.E. Klunk, Nucl. Med. Biol. 34 (2007) 809.
[7] L. Cai, R.B. Innis, V.W. Pike, Curr. Med. Chem. 14 (2007) 19.
[8] P.W. Thompson, A. Lockhart, Drug Discov. Today 14 (2009) 241.
[9] H. LeVine 3rd, Protein Sci. 2 (1993) 404.
Compounds 1 and 2 were prepared as 2 mM stock
solution in DMSO. Suitable DMSO solutions of dyes were
directly added into the assay buffer so that the maximum
final DMSO content in the assays was 0.2 to 2%. Stock
solution of ThT was prepared in H2O.
4.7. Fluorescence binding assay
[10] W.E. Klunk, Y. Wang, G.F. Huang, M.L. Debnath, D.P. Holt, C.A. Mathis,
Life Sci. 69 (2001) 1471.
Fluorescence intensity changes associated with ligand
binding to lysozyme and A
Safas FLX-Xenius fluorimeter (cuvette and plate reader).
Dye binding assay were performed at a fixed 6
aggregated (or non-aggregated) material (lysozyme or
), diluted from the stock solution into 200 L (plate) or
500 L (cuvette) of 20 mM phosphate buffer pH = 7.4,
100 mM NaCl. Concentrated DMSO solutions of dyes were
added for increasing concentration of ligand until a
plateau was reached. In plates the % of DMSO was
constant (0.5%). In cuvette experiments the DMSO content
varied from 0 to 2%. Measurements with ThT, compound 1
b(1-40) were recorded in a
[11] L.S. Wolfe, M.F. Calabrese, A. Nath, D.V. Blaho, A.D. Miranker, Y. Xiong,
Proc. Natl. Acad. Sci. U S A 107 (2010) 16863.
[12] A. Aslund, C.J. Sigurdson, T. Klingstedt, S. Grathwohl, T. Bolmont, D.L.
Dickstein, E. Glimsdal, S. Prokop, M. Lindgren, P. Konradsson, D.M.
Holtzman, P.R. Hof, F.L. Heppner, S. Gandy, M. Jucker, A. Aguzzi, P.
Hammarstrom, K.P. Nilsson, ACS Chem. Biol. 4 (2009) 673.
[13] A. Lockhart, L. Ye, D.B. Judd, A.T. Merritt, P.N. Lowe, J.L. Morgenstern, G.
Hong, A.D. Gee, J. Brown, J. Biol. Chem. 280 (2005) 7677.
[14] R. Leuma Yona, S. Mazeres, P. Faller, E. Gras, ChemMedChem 3 (2008) 63.
[15] M.C. Hong, Y.K. Kim, J.Y. Choi, S.Q. Yang, H. Rhee, Y.H. Ryu, T.H. Choi, G.J.
Cheon, G.I. An, H.Y. Kim, Y. Kim, D.J. Kim, J.S. Lee, Y.T. Chang, K.C. Lee,
Bioorg. Med. Chem. 18 (2010) 7724.
[16] D.M. Skovronsky, B. Zhang, M.P. Kung, H.F. Kung, J.Q. Trojanowski, V.M.
Lee, Proc. Natl. Acad. Sci. U S A 97 (2000) 7609.
[17] H. LeVine 3rd, Biochemistry 44 (2005) 15937.
[18] C.J. Sigurdson, K.P. Nilsson, S. Hornemann, G. Manco, M. Polymenidou,
P. Schwarz, M. Leclerc, P. Hammarstrom, K. Wuthrich, A. Aguzzi, Nat.
Methods 4 (2007) 1023.
[19] E.E. Nesterov, J. Skoch, B.T. Hyman, W.E. Klunk, B.J. Bacskai, T.M.
Swager, Angew. Chem. Int. Ed. 44 (2005) 5452.
[20] Q. Li, J.S. Lee, C. Ha, C.B. Park, G. Yang, W.B. Gan, Y.T. Chang, Angew.
Chem. Int. Ed. 43 (2004) 6331.
[21] M. Hintersteiner, A. Enz, P. Frey, A.L. Jaton, W. Kinzy, R. Kneuer, U.
Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K.H. Wiederhold, H.U.
Gremlich, Nat. Biotechnol. 23 (2005) 577.
[22] C. Ran, X. Xu, S.B. Raymond, B.J. Ferrara, K. Neal, B.J. Bacskai, Z.
Medarova, A. Moore, J. Am. Chem. Soc. 131 (2009) 15257.
[23] K.P. Nilsson, A. Aslund, I. Berg, S. Nystrom, P. Konradsson, A. Herland, O.
Inganas, F. Stabo-Eeg, M. Lindgren, G.T. Westermark, L. Lannfelt, L.N.
Nilsson, P. Hammarstrom, ACS Chem. Biol. 2 (2007) 553.
[24] R. Mishra, D. Sjolander, P. Hammarstrom, Mol. Biosyst. 7 (2011) 1232.
[25] A.A. Reinke, G.A. Abulwerdi, J.E. Gestwicki, Chembiochem 11 (2010)
1889.
m
M
A
b
m
m
and compound 2 utilized
respectively, 10 nm bandpass. Emission were recorded at
em(max) = 480 nm (ThT), 535 nm (compound 1), and
lex = 440, 450, and 453 nm,
l
560 nm (compound 2), 10 nm bandpass. Excitation
wavelength is indicated in the Figure legends. Experi-
ments were conducted at room temperature. The Kd
binding curves were generated by software Kaleidagraph
with non linear one site binding regression. Measure-
ments were carried out after 5 min of incubation of dye
with aggregated material. Longer incubation times did not
result in higher fluorescence.
Acknowledgements
This work was partly supported by the International
Associated Moroccan-French Laboratory on Molecular
Chemistry (LIA, LCMMF). We would like to thank Dr. Neil
Johnson, IPBS Toulouse, for helpful discussions.
[26] P. Hammarstrom, R. Simon, S. Nystrom, P. Konradsson, A. Aslund, K.P.
Nilsson, Biochemistry 49 (2010) 6838.
[27] L. Ye, J.L. Morgenstern, A.D. Gee, G. Hong, J. Brown, A. Lockhart, J. Biol.
Chem. 280 (2005) 23599.
[28] H. LeVine 3rd, Methods Enzymol. 309 (1999) 274.
[29] V.I. Stsiapura, A.A. Maskevich, V.A. Kuzmitsky, V.N. Uversky, I.M. Kuz-
netsova, K.K. Turoverov, J. Phys. Chem. B 112 (2008) 15893.
[30] M. Biancalana, S. Koide, Biochim. Biophys. Acta 1804 (2010) 1405.
[31] E.S. Voropai, M.P. Samtsov, K.N. Kaplevskii, A.A. Maskevich, V.I. Stepuro,
O.I. Povarova, I.M. Kuznetsova, K.K. Turoverov, A.L. Fink, V.N. Uverskii, J.
Appl. Spect. 70 (2003) 868.
Appendix A. Supplementary data
Supplementary data associated with this article can
[32] J.B. Birks, Photophysics of aromatic molecules, Wiley-Interscience,
London, New York, 1970.
[33] M.R. Nilsson, Methods 34 (2004) 151.