The moderate yield of 2 and the spectroscopic observation of
other side products by 1H NMR spectroscopy of the crude
reaction mixture imply H-atom abstraction to be non-selective.
However, we cannot refute the possibility of some (albeit
minor) H-atom abstraction from the solvent medium taking
place or a large KIE resulting from deuteration of the solvent.
Attempts for cleaner formation of 2 from the reaction of 1 and
NaN3 in 1,3-cyclohexadiene or 9,10-dihydroanthracene
resulted in no improvement of the yield. Using N3SiMe3 with
1 also formed 2 in similar isolated yields (34%).12
absorption coefficient = 0.142, F(000) = 1456, y range (deg) =
0.82 ꢀ 18.54, no. of reflections collected = 85 507, no. of unique
reflections = 14 417, data/parameter ratio = 32.39, R(F) = 0.0535,
Rw(F2) = 0.1017, GOF = 1.040, largest diff. peak and hole = 0.953
and ꢀ1.002.
1 J. B. Everhart and B. S. Ault, Inorg. Chem., 1995, 34, 4379;
J. P. Dekker, P. J. van der Put, H. J. Veringa and J. Schoonman,
J. Electrochem. Soc., 1994, 141, 787; Y. Saeki, R. Matsuzaki,
A. Yajima and M. Akiyama, Bull. Chem. Soc. Jpn., 1982,
55, 3193; P. Dunn, Aust. J. Chem., 1960, 13, 225; J. Cueilleron
and M. Charret, Bull. Soc. Chim. Fr., 1956, 802; M. Antler and
A. W. Laubengayer, J. Am. Chem. Soc., 1955, 77, 5250.
Preliminary attempts to generate a titanium nitride anion by
deprototonation of complex 2-15N using bases such as KH or
KCH2Ph in THF failed to remove the proton. Instead, a new
product is produced in the reaction mixture based on multi-
2 G. W. A. Fowles and F. H. Pollard, J. Chem. Soc., 1953, 2588;
R. M. Fix, R. G. Gordon and D. M. Hoffman, J. Am. Chem. Soc.,
1990, 112, 7833; D. M. Hoffman, Polyhedron, 1994, 13, 1169;
B. H. Weiller, Chem. Mater., 1995, 7, 1609; L. H. Dubois,
B. R. Zegarski and G. S. Girolami, J. Electrochem. Soc., 1992,
139, 3603; J. A. Prybyla, C.-M. Chiang and L. H. Dubois,
J. Electrochem. Soc., 1993, 140, 2695; L. H. Dubois, Polyhedron,
1994, 13, 1329; A. Intemann, H. Koerner and F. Koch,
J. Electrochem. Soc., 1993, 140, 3215.
3 J. Chatt, J. R. Dilworth and R. L. Richard, Chem. Rev., 1978,
78, 589; R. R. Schrock, T. E. Glassman and M. G. Vale, J. Am.
Chem. Soc., 1991, 113, 725; R. A. Henderson, G. J. Leigh and
C. J. Pickett, J. Chem. Soc., Dalton Trans., 1989, 425;
J. R. Wilworth, P. L. Dahlstrom, J. R. Hyde and J. Zubieta, Inorg.
Chim. Acta, 1983, 71, 21; T. E. Glassman, M. G. Vale and
R. R. Schrock, Organometallics, 1991, 10, 4046; R. R. Schrock,
T. E. Glassman, M. G. Vale and M. Kol, J. Am. Chem. Soc., 1993,
1
nuclear (15N, H) NMR spectroscopy. For example, the 15N
NMR spectrum displays a new doublet at 394 ppm (1JNH
=
58 Hz) indicative of retention of the NH group. Further
analysis of the new product by 1H NMR shows the 15N–H
resonance also as a doublet at 5.78 ppm (1JHN = 58 Hz). As a
result, we propose that deprotonation of the nacnac b-methyl
group has occurred. This conclusion is corroborated by the
loss of symmetry of the nacnac ligand: a singlet at 1.56 ppm
integrated to 3H [(Me)C(NAr)CH(CH2)(NAr)] and two
different singlets at 3.12 and 2.46 ppm integrated to one
H for each resonance and assigned to the geminal methylene
115, 1760; M. R. Reithofer, R. R. Schrock and P. Muller, J. Am.
¨
group in [(Me)C(NAr)CH(CH2)(NAr)]2ꢀ 17
.
Chem. Soc., 2010, 132, 8349; D. V. Yandulov and R. R. Schrock,
J. Am. Chem. Soc., 2002, 124, 6252.
4 P. J. McKarns, G. P. A. Yap, A. L. Rheingold and C. H. Winter,
Inorg. Chem., 1996, 35, 5968.
In this work, we have demonstrated that incomplete
reduction of the N3 ligand by a d1 metal center still results
ꢀ
5 P. Mountford, Acc. Chem. Res., 2005, 38, 839; A. R. Fout,
U. J. Kilgore and D. J. Mindiola, Chem.–Eur. J., 2007, 13, 9428.
6 C. T. Saouma and J. C. Peters, Coord. Chem. Rev., 2011, 255,
920–937; J. F. Berry, Comments Inorg. Chem., 2009, 30, 28–66.
7 D. J. Mindiola, K. Meyer, J. P.-F. Cherry, T. A. Baker and
C. C. Cummins, Organometallics, 2000, 19, 1622.
8 D. J. Mindiola, PhD. Thesis, Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, MA, 2000.
9 M. G. Fickes, PhD. Thesis, Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, MA, 1998.
10 B. L. Tran, M. Pink, X. Gao, H. Park and D. J. Mindiola, J. Am.
Chem. Soc., 2010, 132, 1458.
11 F. Basuli, B. C. Bailey, J. Tomaszewski, J. C. Huffman and
D. J. Mindiola, J. Am. Chem. Soc., 2003, 125, 6052.
12 See supporting information.
in N2 extrusion with presumed formation of an electron
deficient titanium nitridyl, thereby providing entry to a rare
example of a group 4 parent imide. Rather than undergoing
4ꢀ
ligand radical ejection or N–N coupling to form an N2
ligand, H-atom abstraction (not from solvent) appears to be
the dominant pathway in formation the N–H bond. Current
effort in our group is geared toward utilizing the t-butyl
version of the nacnac scaffold, [(tBu)C(NAr)CH(tBu)(NAr)]ꢀ,
to circumvent the problem of backbone deprotonation.
We thank Indiana University, Bloomington, the Chemical
Sciences, Geosciences and Biosciences Division, Office of Basic
Energy Science, Office of Science, US Department of Energy
(DE-FG02-07ER15893) for financial support of this research.
We also thank ChemMatCARS Sector (NSF/DOE CHE-
0535644) and Advance Photo Source (DOE, Office of Science,
Office of Basic Energy Sciences under DE-AC02-06CH11357).
D.A.H. thanks the Harry G. Day and the Women in Chemistry
summer scholarships at Indiana University.
13 C. C. Cummins, R. R. Schrock and W. M. Davis, Inorg. Chem.,
1994, 33, 1448.
14 This value compares well a terminal imido complex of Ta(V).
J. S. Freundlich, R. R. Schrock, C. C. Cummins and
W. M. Davis, J. Am. Chem. Soc., 1994, 116, 6476; For a another
example see: G. Parkin, A. v. Asselt, D. J. Leahy, L. Whinnery,
N. G. Hua, R. W. Quan, L. M. Henling, W. P. Schaefer,
B. D. Santarsiero and J. E. Bercaw, Inorg. Chem., 1992, 31, 82.
15 Mononuclear titanium nitrides are extremely rare: A.-M. Fuller,
W. Clegg, R. W. Harrington, D. L. Hughes and S. J. Lancaster,
Chem. Commun., 2008, 5776; A. J. Mountford, S. J. Lancaster and
S. J. Coles, Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,
2007, C63, m401.
16 D. J. Mindiola, K. Meyer, J.-P. F. Cherry, T. A. Baker and
C. C. Cummins, Organometallics, 2000, 19, 1622.
17 D. Adhikari, F. Basuli, J. H. Orlando, X. Gao, J. C. Huffman,
M. Pink and D. J. Mindiola, Organometallics, 2009, 28, 4115;
F. Basuli, J. C. Huffman and D. J. Mindiola, Inorg. Chem., 2003,
42, 8003.
Notes and references
y X-ray data for 1: monoclinic, P21/c, T = 150(2)K a = 10.6177(10),
b = 33.391(3), c = 11.5326(11), b = 107.582(2)1, Z = 4, V = 3897.7(6)
A3, absorption coefficient = 0.321, F(000) = 1492, y range (deg) =
0.1.95–27.60, no. of reflections collected = 39483, no. of unique
reflections = 9003, data/parameter ratio = 18.83, R(F) = 0.0439,
Rw(F2) = 0.0985, GOF = 1.034, largest diff. peak and hole = 0.362
and ꢀ0.329.
z X-ray data for 2: monoclinic, P21/c, T = 120(2)K, a = 11.(9), b =
28.874(2), c = 12.3682(9), b = 115.276(2)1, Z = 4, V = 3806.5(5) A3,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1529–1531 1531