C. Joce et al. / Bioorg. Med. Chem. Lett. 22 (2012) 278–284
283
SAM binding
promotes.....
MetJ
MetJ
MetJ
MetJ
F
.....F-metC binding.
Complex
F
LOW ANISOTROPY
HIGH ANISOTROPY
Figure 5. Cartoon illustrating the fluorescence anisotropy assay. The SAM molecules promote the formation of a SAM–F-metC–protein complex, with two MetJ dimers bound
to the 18 base-pair DNA duplex.
Table 1
Table 3
EC50 values, that is the concentration of MetJ monomer required
to promote half-maximal formation of its complex with the F-
metC DNA, in the presence of ligands (see Scheme 2 and Fig. 3);
improvements in the activity of bivalent ligands relative to a
monovalent control are shown
EC50 values, that is the concentration of MetJ monomer required to promote half-
maximal formation of its complex with the F-metC DNA, in the presence of ligands
(see Scheme 3 and Fig. 2); improvements in the activity of bivalent ligands relative to
a monovalent control are shown
Compound
EC50 (nM)
150 10
Fold-improvement over monovalent control 5
Compound
EC50 (nM)
Fold-improvement over
monovalent control
(11 or 12)
5
—
16a (n = 2)
16b (n = 4)
19b (n = 3)
19d (n = 6)
50
42
108
51
6
3
3
2
3.0-fold
3.6-fold
1.4-fold
2.9-fold
SAM, 1
17.3 0.3
120 10
—
11
9a
9b
9c
9d
9e
—
61
37
3
2
1
4
5
2.0-fold
3.2-fold
3.1-fold
1.6-fold
1.1-fold
The concentration of the ligands was 2 mM and the concentration of F-metC was
10 nM. EC50 values were determined based on an average of three titrations, fitted
to a sigmoidal growth logistic model (see Supplementary data).
39
75
111
12
10a
10b
36
15
10
6
5
1
—
2.4-fold
3.6-fold
Acknowledgments
The concentration of the monovalent ligands 11 and 12 was
2 mM, and the concentration of the bivalent ligands 9 and 10
was 1 mM. The concentration of F-metC was 10 nM, and the final
concentration of DMSO was 2%. EC50 values were determined
based on an average of three titrations, fitted to a sigmoidal
growth logistic model (see Supplementary data).
We thank the Wellcome Trust, EPSRC and BBSRC for funding.
Supplementary data
Supplementary data (supplementary schemes, experimental
details for the preparation of ligands and fluorescence anisotropy
experiments) associated with this article can be found, in the on-
Table 2
EC50 values, that is the concentration of MetJ monomer required
to promote half-maximal formation of its complex with the F-
metC DNA, in the presence of ligands (see Scheme 3 and Fig. 2);
improvements in the activity of bivalent ligands relative to a
monovalent control are shown
References and notes
1. (a) Kramer, R. H.; Karpen, J. W. Nature 1998, 395, 710; (b) Pickens, J. C.; Mitchell,
D. D.; Liu, J.; Tan, X.; Zhang, Z.; Verlinde, C. L.; Hol, W. G.; Fan, E. Chem. Biol.
2004, 11, 1205; (c) LaFrate, A. L.; Carlson, K. E.; Katzenellenbogen, J. A. Bioorg.
Med. Chem. 2009, 17, 3528.
2. (a) Murray, C. W.; Rees, D. C. Nat. Chem. 2009, 1, 187; (b) Hadjuk, P. J.; Greer, J.
Nat. Rev. Drug Disc. 2007, 6, 211.
3. Lavogina, D.; Enkvist, E.; Uri, A. ChemMedChem 2010, 5, 23.
4. Rafferty, J. B.; Somers, W. S.; Saint-Girons, I.; Phillips, S. E. V. Nature 1989, 341,
705.
5. Phillips, S. E. V.; Manfield, I.; Parsons, I.; Davidson, B. E.; Rafferty, J. B.; Somers,
W. S.; Margarita, D.; Cohen, G. N.; Saint-Girons, I.; Stockley, P. G. Nature 1989,
341, 711.
6. Parsons, I. D.; Persson, B.; Mekhalfia, A.; Blackburn, G. M.; Stockley, P. G. Nucleic
Acids Res. 1995, 23, 211.
7. Cooper, A.; McAlpine, A.; Stockley, P. G. FEBS Lett. 1994, 348, 41.
8. Phillips, S. E. V.; Manfield, I.; Parsons, I.; Davidson, B. E.; Rafferty, J. B.; Somers,
W. S.; Margarita, D.; Cohen, G. N.; Saint-Girons, I.; Stockley, P. G. Nature
(London) 1989, 341, 711.
Compound
EC50 (nM)
Fold-improvement over
monovalent control 4
4
1000 100
—
15a (n = 2)
15b (n = 4)
18a (n = 2)
18b (n = 3)
18c (n = 4)
18d (n = 6)
110
76
700 50
320 40
220 20
6
2
9.1-fold
13-fold
1.4-fold
3.1-fold
4.5-fold
21-fold
47
1
The concentration of the ligands was 2 mM and the concentra-
tion of F-metC was 10 nM. EC50 values were determined based on
an average of three titrations, fitted to
logistic model (see Supplementary data).
a sigmoidal growth
9. Hoffman, J. L. Biochemistry 1986, 25, 4444.
10. Thompson, M. J.; Mekhalfia, A.; Jakeman, D. L.; Phillips, S. E. V.; Phillips, K.;
Porter, J.; Blackburn, G. M. Chem. Commun. 1996, 791.
11. Joce, C.; Caryl, J.; Stockley, P. G.; Warriner, S.; Nelson, A. Org. Biomol. Chem.
2009, 7, 635.
12. Chakrabarti, P.; Dunitz, J. D. Helv. Chim. Acta 1982, 65, 1555.
13. Stockley, P. G.; Baron, A. J.; Wild, C. M.; Parsons, I. D.; Miller, C. M.; Holtham, C.
A. M.; Baumberg, S. Biosens. Bioelectron. 1998, 13, 637.
14. Phillips, S. E. V. Curr. Opin. Struct. Biol. 1991, 1, 89.
15. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046.
evidence of bivalent interaction with a target has been obtained
with such ligands, optimisation of the linker may subsequently
be possible. The development of strategies for designing effective
linkers remains an important challenge, however, because of the
large affinity enhancements that are possible with bivalent ligands
in optimal cases.