electron-deficient arenes most reactive in all studied
transformations.10 Given the prevalence of indoles in
medicinal chemistry and pharmaceutical industries, we
became interested in exploring the first ruthenium-
catalyzed oxidative annulations with simple aniline deri-
vatives, the development of which we report herein. Notable
features of the new protocol include the unprecedented use
of cationic ruthenium(II) complexes for oxidative annula-
tions of alkynes, along with an extraordinary chemoselec-
tivity that enabled CÀH bond transformations in water12,13
as an environmentally benign reaction medium. Impor-
tantly, mechanistic studies revealed electron-rich arenes
to be converted preferentially, thus highlighting a novel
reaction manifold to be operative in ruthenium-catalyzed
oxidative CÀH bond transformations.
for the generation of cationic ruthenium(II) complexes
with a weakly coordinating anion.16À18 Transformations
in the presence of the surfactant polyoxyethanyl R-toco-
pheryl sebacate (PTS) did not improve the yield of desired
product 3aa (entries 8 and 9), providing support for the
catalytic CÀH bond functionalization to take place in
water.12 Notably, the catalytic efficacy of our inexpensive
cationic ruthenium complex compared favorably to the one
of representative palladium or rhodium precursors (entries 3
and 4 vs 12 and 13). As to the catalytically active species,
it is noteworthy that a well-defined cationic ruthenium(II)
complex16 provided a yield comparable to the one obtained
with the in situ generated catalyst (entries 3 and 4 vs 14).
Our studies were initiated by probing various solvents
and cocatalytic additives for the envisioned ruthenium-
catalyzed oxidative preparation of N-substituted indoles.
Since the 2-pyrimidyl14 group was shown to be easily
removed from the indole nucleus,15 we focused our opti-
mization studies on the use of N-2-pyrimidyl-substituted
anilines (Table 1). Among a set of representative solvents,
water proved to be optimal (entries 1À4) and also fur-
nished higher yields as compared to reactions performed
in the absence of any solvent (entry 5). High catalytic
efficacy was accomplished with a complex generated from
[RuCl2(p-cymene)]2 and cocatalytic amounts of KPF6
(entries 4À7), reaction conditions previously established
Table 1. Optimization for the Synthesis of Indole 3aa in Watera
3aa
entry solvent t [°C]
additive (mol %)
(%)
1
t-AmOH 100 KPF6 (10)
44
19
92
94b
53
2
DMF
H2O
H2O
À
100 KPF6 (10)
3
100 KPF6 (10)
100 KPF6 (20)
100 KPF6 (10)
100 KPF6 (10)
(9) [Rh]: (a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474–16475. (b) Stuart, D. R.;
Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326–
18339. (c) Huestis, M. P.; Chan, L. N.; Stuart, D. R.; Fagnou, K. Angew.
Chem., Int. Ed. 2011, 50, 1338–1341. [Cu]: (d) Bernini, R.; Fabrizi, G.;
Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078–8081.
See also: (e) Guan, Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu, X.-Y.; Liang,
Y.-M. Chem. Commun. 2010, 46, 2823–2825. [Pd]: (f) Wurtz, S.;
Rakshit, S.; Neumann, J. J.; Droge, T.; Glorius, F. Angew. Chem., Int.
Ed. 2008, 47, 7230–7233. (g) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.;
Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572–4576. (h) Chiba,
S.; Zhang, L.; Sanjaya, S.; Ang, G. Y. Tetrahedron 2010, 66, 5692–5700.
(i) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676–3677.
(j) Zhou, F.; Han, X.; Lu, X. Tetrahedron Lett. 2011, 52, 4681–4685.
(10) (a) Ackermann, L.;Lygin, A. V.; Hofmann, N.Angew. Chem., Int.
Ed. 2011, 50, 6379–6382. (b) Ackermann, L.; Lygin, A. V.; Hofmann, N.
Org. Lett. 2011, 13, 3278–3281. (c) Ackermann, L.; Wang, L.; Lygin, A. V.
Chem. Sci. 2012, 2, 177–180.
4
5
c
6
H2O
H2O
H2O
H2O
H2O
H2O
H2O
H2O
H2O
À
7
100
80
À
6
8
KPF6 (10)
KPF6 (10)
58
9
80
58d
43e
63e
16f
85g
10
11
12
13
14
100 KPF6 (10)
100 KPF6 (10), KOAc (200)
100 KPF6 (10)
100 KPF6 (10)
100 [Ru2Cl3(p-cymene)2][PF6] (2.5) 96
a Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), [RuCl2(p-
cymene)]2 (2.5 mol %), Cu(OAc)2•H2O (2.0 equiv), solvent (2.0 mL);
yields of isolated product. b [RuCl2(p-cymene)]2 (5.0 mol %). c In the
absence of [RuCl2(p-cymene)]2. d With PTS (3 wt %). e Cu(OAc)2•H2O
(1.0 equiv). f [Pd(PPh3)2Cl2] (10 mol %). g [RhCp*Cl2]2 (5.0 mol %).
(11) (a) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345. (b) See
ꢀ
also: Ackermann, L.; Novak, P.; Vicente, R.; Pirovano, V.; Potukuchi,
H. K. Synthesis 2010, 2245–2253. (c) Ackermann, L. Pure Appl. Chem.
2010, 82, 1403–1413.
(12) Recent reviews on metal-catalyzed reactions in or on water: (a)
Li, C.-J. Acc. Chem. Res. 2010, 43, 581–590. (b) Lipshutz, B. H.; Abela,
A. R.; Boskovic, Z. V.; Nishikata, T.; Duplais, C.; Krasovskiy, A. Top.
Catal. 2010, 53, 985–990. (c) Butler, R. N.; Coyne, A. G. Chem. Rev.
2010, 110, 6302–6337 and references cited therein.
(13) Recent ruthenium-catalyzed oxidative CÀH bond transforma-
tions in water: (a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153–
4155. (b) Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548–6551. See
also: (c) Li, B; Feng, H.; Xu, S.; Wang, B. Chem.;Eur. J. 2011, 17,
12573–12577.
(14) For very recent elegant reports on related rhodium- and palla-
dium-catalyzed transformations of anilines with difficult to remove 2-pyr-
idyl-substituents in organic solvents, including one example with a
2-pyrimidyl directing group, see: (a) Chen, J.; Song, G.; Pan, C.-L.;
Li, X. Org. Lett. 2010, 12, 5426–5429. (b) Chen, J.; Pang, Q.; Sun, Y.; Li,
X. J. Org. Chem. 2011, 76, 3523–3526.
With an optimized catalytic system in hand, we surveyed its
scope in the oxidative indole synthesis in water (Scheme 1).
Anilines displaying either 2-pyrimidyl or 2-pyridyl sub-
stituents were efficiently converted to the desired indoles
3aaÀ3cb, while the N-2-pyrimidyl group was easily cleaved
from the indole 3aa (Scheme 2). The cationic ruthenium-
(II) complex was not limited to tolane derivatives, but also
allowed the efficient annulation of alkyl-substituted deriv-
atives 2. Unsubstituted aniline 1c as well as derivatives 1
ꢀ
(17) Fernandez, S.; Pfeffer, M.; Ritleng, V.; Sirlin, C. Organometal-
lics 1999, 18, 2390–2394.
(15) Ackermann, L.; Lygin, A. V. Org. Lett. 2011, 13, 3332–3335.
(16) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974,
233–241.
(18) (a) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211–
229. See also: (b) Flegeau, E. F.; Bruneau, C.; Dixneuf, P. H.; Jutand, A.
J. Am. Chem. Soc. 2011, 133, 10161–10170.
Org. Lett., Vol. 14, No. 3, 2012
765