A. S. Weller et al.
FULL PAPER
J(RhP) = 132 Hz, 1 P] 61.40 [dd, J(P,P) = 282 Hz, J(RhP) =
136 Hz, 1 P] ppm.
J(P,P)cis = 34 Hz, J(P,P)trans = 240 Hz, 1 P], 63.05 [ddd, J(RhP) =
132 Hz, J(P,P)cis = 37 Hz, J(P,P)trans = 240 Hz, 1 P], 115.18 [dt,
J(RhP) = 142 Hz, J(P,P) = 35 Hz, 1 P] ppm.
[Rh{(κ3-Ph2PCH2CH2)S}CO][BArF
]
4
(1c): [Rh{(κ3-Ph2PCH2-
[Rh{(κ3-Ph2PCH2CH2)O}CO][BArF4] (3c): To the best of our
knowledge, no NMR or IR data has been reported for this known
species, hence we report it here.[35] (NMR tube scale) Compound
3a (10 mg, 0.015 mmol) was dissolved in [D6]acetone and to this
was added pentanal (7.1 μL, 0.067 mmol). The sealed tube was hy-
drogenated under H2 (4 atm). After 48 h, the carbonyl species
forms as the sole product and was characterised in situ by NMR
and IR spectroscopy and ESI mass spectrometry. 31P{1H} NMR
(122 MHz [D6]acetone): δ = 49.67 [d, J(RhP) = 129 Hz, 2 P] ppm.
CH2)2S}Cl] (9 mg, 0.015 mmol) was added to Na[BArF4] (13.4 mg,
0.015 mmol) in a Young’s NMR tube. To this was added pentanal
(13.4 μL, 0.126 mmol) and then CD2Cl2 (0.45 mL). The tube was
shaken to encourage mixing to form a bright yellow solution. The
resulting solution was then concentrated to dryness under vacuum
and washed with pentane (with sonication) three times. After dry-
ing under vacuum, the product was characterised in situ by NMR
spectroscopy. 1H NMR (500 MHz CD2Cl2): δ = 2.58–3.79 (br., 8
H, CH2), 7.47–7.69 (m, 20 H, Ph), 7.56 (s, 4 H, BArF4), 7.73 (s, 8
H, BArF4) ppm. 31P{1H} NMR (122 MHz CD2Cl2): δ = 53.34 [d,
IR ([D ]acetone): ν = 1995 cm–1. ESI-MS: calcd. for [M+] 573.06;
˜
6
J(RhP) = 131 Hz, 2 P] ppm. IR (CH Cl ): ν = 2021 cm–1. ESI-MS:
found 573.06.
˜
2
2
calcd. for [M+] 589.04; found 589.04.
[Rh{(κ3-Ph2PCH2CH2)S}Cl2CH2Cl]
(1d):
[Rh{(κ3-Ph2PCH2-
Acknowledgments
CH2)2S}Cl] (15 mg) was dissolved in CH2Cl2 and left for 18 h at
298 K. The complex was characterised in situ before the solution
was layered with pentane to form a microcrystalline solid appropri-
The EPSRC and the University of Oxford are acknowledged for
support.
1
ate for microanalysis H NMR (500 MHz CD2Cl2): δ = 2.85 (m, 2
H, CH2), 3.27 (m, 2 H, CH2), 3.40 (m, 2 H, CH2), 3.82 (m, 4 H,
CH2 and CH2Cl) 7.38–7.44 (m, 12 H, Ph), 7.74 (m, 4 H, Ph), 8.13
(m, 4 H, Ph) ppm. 31P{1H} NMR (122 MHz CD2Cl2): δ = 33.85 [d,
J(RhP) = 102 Hz, 2 P] ppm.C29H30Cl3P2SRh·1/3CH2Cl2 (710.14):
calcd. C 49.61, H 4.35; found C 49.49, H 4.12.
[1] D. P. Fairlie, B. Bosnich, Organometallics 1988, 7, 946–954.
[2] J. W. Suggs, J. Am. Chem. Soc. 1978, 100, 640–641.
[3] M. C. Willis, Chem. Rev. 2010, 110, 725–748 .
[4] T. B. Marder, D. C. Roe, D. Milstein, Organometallics 1988, 7,
1451–1453.
[5] Z. Shen, P. K. Dornan, H. A. Khan, T. K. Woo, V. M. Dong,
J. Am. Chem. Soc. 2009, 131, 1077–1091.
[6] A. H. Roy, C. P. Lenges, M. Brookhart, J. Am. Chem. Soc.
2007, 129, 2082–2093.
[7] I. F. D. Hyatt, H. K. Anderson, A. T. Morehead, A. L.
Sargent, Organometallics 2008, 27, 135–147.
[8] C. M. Beck, S. E. Rathmill, Y. J. Park, J. Chen, R. H. Crabtree,
L. M. Liable-Sands, A. L. Rheingold, Organometallics 1999,
18, 5311–5317.
[9] P. Fristrup, M. Kreis, A. Palmelund, P.-O. Norrby, R. Madsen,
J. Am. Chem. Soc. 2008, 130, 5206–5215.
[10] A. T. Luedtke, K. I. Goldberg, Inorg. Chem. 2007, 46, 8496–
8498.
[11] M. P. Lanci, M. S. Remy, D. B. Lao, M. S. Sanford, J. M.
Mayer, Organometallics 2011, 30, 3704–3707.
[12] D. Milstein, Acc. Chem. Res. 1984, 17, 221–226.
[13] R. Goikhman, D. Milstein, Angew. Chem. 2001, 113, 1153; An-
gew. Chem. Int. Ed. 2001, 40, 1119–1122.
[14] C. H. Jun, E. A. Jo, J. W. Park, Eur. J. Org. Chem. 2007, 1869–
1881.
[Rh{(κ3-Ph2PCH2CH2)2PPh}(η2-H2C=CHCOOCH3)][BArF4] (2a):
[Rh{(κ3-Ph2PCH2CH2)2PPh}Cl] (30 mg, 0.045 mmol) was added
to Na[BArF4] (39.6 mg, 0.045 mmol) in a small Schlenk flask. To
this was added methyl acrylate (40 μL, 0.444 mmol, 10 equiv.) and
then CH2Cl2 (1.5 mL). The solution was stirred for 1 h and filtered
to remove NaCl. The resulting solution was concentrated to dry-
ness under vacuum and washed with pentane (with sonication)
three times before the resulting oil was dried under vacuum to form
a yellow solid (yield = 52%). The solid-state structure was obtained
by using the [B(3,5-Cl2C6H3)4]– salt, which was prepared by a sim-
ilar method.[28] 1H NMR (500 MHz CD2Cl2): δ = 2.10 (br., 2 H,
CH2), 2.27 (br., 2 H, CH2), 2.60 (br., 2 H, CH2), 2.91 [double mul-
tiplet, J(P,H) = 42 Hz, CH2], 3.07 [d, J(H,H) = 6 Hz, 1 H, al-
kene(CH2)], 3.13 (s, 3 H, CH3), 4.04 [br., 2 H, alkene (coincident
protons; CH2 and CHCOOCH3)], 7.3–7.65 (m, 25 H, Ph), 7.55 (s,
4 H, BArF4), 7.73 (s, 8 H, BArF4) ppm. 13C{1H} NMR (126 MHz
CD2Cl2): δ = 27.48 (br., 2 C, CH2), 32.75 (br., 2 C, CH2), 52.01 (s,
1 C, CH3), 71.74 (s, 1 C, alkene CH2), 72.67 (s, 1 C, alkene CHR),
128–134.5 (phenyl region + [BArF4] resonances {118.16–117.94
(m), 125.16 [q, 1J(F,C) = 272 Hz], 129.42 [qq, 2J(F,C) = 31 Hz,
[15] K. Tanaka, Y. Shibata, T. Suda, Y. Hagiwara, M. Hirano, Org.
Lett. 2007, 9, 1215–1218.
[16] M. M. Coulter, K. G. M. Kou, B. Galligan, V. M. Dong, J. Am.
Chem. Soc. 2010, 132, 16330–16333.
1
4J(BC) = 3 Hz], 135.36 (s), 162.31 [q, J(BC) = 50 Hz]}), 169.61 (s,
1 C, CO2Me) ppm. 31P{1H} NMR (202 MHz CD2Cl2): δ = 66.49
[dd, J(P,P) = 38 Hz, J(RhP) = 132 Hz, 2 P], 123.29 [dt, J(P,P) =
38 Hz, J(RhP) = 134 Hz, 1 P] ppm. C63H53BCl10O2P3Rh·CH2Cl2
(1403.26) {as the [B(3,5-Cl2C6H3)4]– salt}: calcd. C 53.92, H 3.81;
found C 54.45, H 3.96.
[17] M. C. Willis, S. J. McNally, P. J. Beswick, Angew. Chem. 2004,
116, 344; Angew. Chem. Int. Ed. 2004, 43, 340–343.
[18] J. C. Jeffrey, T. B. Rauchfuss, Inorg. Chem. 1979, 18, 2658–
2666.
[19] G. L. Moxham, H. E. Randell-Sly, S. K. Brayshaw, R. L.
Woodward, A. S. Weller, M. C. Willis, Angew. Chem. 2006, 118,
7780; Angew. Chem. Int. Ed. 2006, 45, 7618–7622.
[20] G. L. Moxham, H. Randell-Sly, S. K. Brayshaw, A. S. Weller,
M. C. Willis, Chem. Eur. J. 2008, 14, 8383–8397.
[21] R. J. Pawley, G. L. Moxham, R. Dallanegra, A. B. Chaplin,
S. K. Brayshaw, A. S. Weller, M. C. Willis, Organometallics
2010, 29, 1717–1728.
[22] K. Wang, T. J. Emge, A. S. Goldman, C. Li, S. P. Nolan, Orga-
nometallics 1995, 14, 4929–4936.
[23] J. F. Riehl, Y. Jean, O. Eisenstein, M. Pelissier, Organometallics
1992, 11, 729–737.
[24] M. Kreis, A. Palmelund, L. Bunch, R. Madsen, Adv. Synth.
Catal. 2006, 348, 2148–2154.
[Rh{(κ3-Ph2PCH2CH2)2PPh}{η2-H2C=CHSi(CH3)3}][BArF4] (2b):
To [Rh{(κ3-Ph2PCH2CH2)2PPh}Cl] (10 mg, 0.015 mmol) was
added Na[BArF4] (13.2 mg, 0.015 mmol) and vinyltrimethylsilane
(21.8 μL, 0.149 mmol) in CD2Cl2 (0.5 mL). This was agitated in an
ultrasound bath for 1 h before in situ characterisation by NMR
spectroscopy. 1H NMR (500 MHz CD2Cl2): δ = –0.54 (s, 9 H,
SiMe3), 1.77–3.10 (br., 8 H, CH2), 3.54 [d, J(H,H) = 12 Hz, 1 H,
alkene (CH2)], 4.55 [dd, J(H,H)trans = 16 Hz, J(H,H)cis = 10 Hz, 1
H, alkene(CHR)], 5.04 [br., 1 H, alkene (CH2)], 7.35–7.69 (m, 25
H, Ph), 7.56 (s, 4 H, BArF4), 7.74 (s, 8 H, BArF4) ppm. 31P{1H}
NMR (202 MHz CD2Cl2): δ = 55.03 [ddd, J(RhP) = 138 Hz,
5564
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 5558–5565