10.1002/cctc.201601517
ChemCatChem
FULL PAPER
[9]
N. T. Byrom, R. Grigg, B. Kongkathip, G. Reimer, A. R. Wade, J. Chem.
Soc., Perkin Trans. 1 1984, 1643-1653.
Et2O was added to extract. The organic layer was dried over MgSO4, and
was filtrated. The filtrate was evaporated, and the residue was purified by
silica gel column chromatography (hexane/ethyl acetate = 5/1 with 1%
triethylamine) to afford 3ac as a colorless oil (87 mg, 0.49 mmol, 49%
yield). The spectral data for 3ac were in accordance with those reported in
[10] B. Kongkathip, R. Sookkho, N. Kongkathip, Chem. Lett. 1985, 14, 1849-
1850.
[11] T. Hosokawa, Y. Makabe, T. Shinohara, S.-I. Murahashi, Chem. Lett.
1985, 14, 1529-1530.
[12] W. Kroutil, I. Osprian, M. Mischitz, K. Faber, Synthesis 1997, 156-158.
[13] T. Hosokawa, T. Ohta, S. Kanayama, S. Murahashi, J. Org. Chem. 1987,
52, 1758-1764.
2-(Phenylmethyl)-5,5-dimethyl-1,3-dioxane (3ad): The reaction was
performed in a similar manner as 3aa. After cooling to room temperature,
the solvent and volatile materials were evaporated. To the residue, 3 M
HCl aq. (1.5 mL) and THF (2.5 mL) were added, and the reaction mixture
was stirred at 40 °C for 2 h. The mixture was then neutralized with NaHCO3
aq., and Et2O was added to extract. The organic layer was dried over
MgSO4, and was filtrated. The filtrate was evaporated, and the residue was
purified by silica gel column chromatography (hexane/ethyl acetate = 7/1
with 1% triethylamine) to afford 3ad as a colorless oil (86 mg, 0.42 mmol,
[14] T. Hosokawa, T. Yamanaka, S.-I. Murahashi, J. Chem. Soc., Chem.
Commun. 1993, 117-119.
[15] T. Hosokawa, T. Yamanaka, M. Itotani, S.-I. Murahashi, J. Org. Chem.
1995, 60, 6159-6167.
[16] J. Lai, X. Shi, L. Dai, J. Org. Chem. 1992, 57, 3485-3487.
[17] T. Hosokawa, S. Aoki, S.-I. Murahashi, Synthesis 1992, 558-561.
[18] A. M. Balija, K. J. Stowers, M. J. Schultz, M. S. Sigman, Org. Lett. 2006,
8, 1121-1124.
[19] M. Yamamoto, S. Nakaoka, Y. Ura, Y. Kataoka, Chem. Commun. 2012,
48, 1165-1167.
[20] T. Hosokawa, Y. Ataka, S.-I. Murahashi, Bull. Chem. Soc. Jpn. 1990, 63,
166-169.
[21] A. Dutta Chowdhury, G. Kumar Lahiri, Chem. Commun. 2012, 48, 3448-
1
42% yield). H NMR (300 MHz, CDCl3) 7.31–7.19 (m, 5H), 4.60 (t, J =
5.1 Hz, 1H), 3.59 (d, J = 10.8 Hz, 2H), 3.38 (d, J = 10.8 Hz, 2H), 2.94 (d, J
= 5.1 Hz, 2H), 1.19 (s, 3H), 0.69 (s, 3H). 13C NMR (75 MHz, CDCl3) 136.7,
129.6, 128.2, 126.4, 102.6, 77.3, 41.6, 30.1, 23.0, 21.8. HRMS (ESI): m/z
calcd for C13H18O2Na [M+Na]+ 229.1205, found 229.1213.
3450.
[22] M. A. Kumar, P. Swamy, M. Naresh, M. M. Reddy, C. N. Rohitha, S.
Prabhakar, A. V. S. Sarma, J. R. P. Kumar, N. Narender, Chem.
Commun. 2013, 49, 1711-1713.
[23] J. Muzart, Tetrahedron 2007, 63, 7505-7521.
[24] J. Guo, P. Teo, Dalton Trans. 2014, 43, 6952-6964.
[25] J. J. Dong, W. R. Browne, B. L. Feringa, Angew. Chem., Int. Ed. 2015,
54, 734-744.
Kinetic Experiments
[26] J. A. Wright, M. J. Gaunt, J. B. Spencer, Chem. Eur. J. 2006, 12, 949-
All the reactions were performed in sealed J. young NMR tubes (528-LPV-
8). PdCl2(MeCN)2, MeOBQ, CuCl (or n-Bu4NCl), and pinacol were placed
in the NMR tube under argon. The tube was cooled in an ice bath. t-
AmylOH, methyl benzoate (as an internal standard, 15 L, 0.12 mmol),
styrene, and CDCl3 were added to the above mixture at 0 °C, and O2 (10
mL) was passed through the reaction mixture via syringe. The sample was
955.
[27] P. Teo, Z. K. Wickens, G. Dong, R. H. Grubbs, Org. Lett. 2012, 14, 3237-
3239.
[28] S. L. Bourne, S. V. Ley, Adv. Synth. Catal. 2013, 355, 1905-1910.
[29] S. Nakaoka, Y. Murakami, Y. Kataoka, Y. Ura, Chem. Commun. 2016,
52, 335-338.
[30] G.-Q. Chen, Z.-J. Xu, C.-Y. Zhou, C.-M. Che, Chem. Commun. 2011, 47,
°
then introduced into a NMR probe at 25 C, and was warmed to 40 °C
10963-10965.
immediately. The increase of the integration of CH signal (5.23 ppm) for
3aa was followed by 1H NMR spectroscopy. The moment at which the
probe temperature reached to 40 °C was regarded as a starting time. The
initial rates were calculated from the maximum slopes on the graphs
plotted the concentration of 3aa vs. reaction time.
[31] A. D. Chowdhury, R. Ray, G. K. Lahiri, Chem. Commun. 2012, 48, 5497-
5499.
[32] J. Chen, C.-M. Che, Angew. Chem., Int. Ed. 2004, 43, 4950-4954.
[33] G. Jiang, J. Chen, H.-Y. Thu, J.-S. Huang, N. Zhu, C.-M. Che, Angew.
Chem., Int. Ed. 2008, 47, 6638-6642.
[34] Although stoichiometric amounts of the reagents are required, a simple
NBS/AgOTf system also has been reported recently. See: P. V. Balaji, S.
Chandrasekaran, Eur. J. Org. Chem. 2016, 2547-2554.
[35] See Supporting Information for the yields of byproducts.
[36] R. G. Wilkins, in Kinetics and Mechanism of Reactions of Transition Metal
Complexes, 2nd ed., VCH, Weinheim, Germany, 1991, p. 24.
[37] M. C. Denney, N. A. Smythe, K. L. Cetto, R. A. Kemp, K. I. Goldberg, J.
Am. Chem. Soc. 2006, 128, 2508-2509.
Acknowledgements
This study was supported by JSPS KAKENHI Grant Numbers
JP16H01028 in Precisely Designed Catalysts with Customized
Scaffolding and JP25410116.
[38] M. M. Konnick, B. A. Gandhi, I. A. Guzei, S. S. Stahl, Angew. Chem., Int.
Ed. 2006, 45, 2904-2907.
[39] J. M. Keith, R. P. Muller, R. A. Kemp, K. I. Goldberg, W. A. Goddard, J.
Oxgaard, Inorg. Chem. 2006, 45, 9631-9633.
[40] M. M. Konnick, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 5753-5762.
[41] N. Decharin, B. V. Popp, S. S. Stahl, J. Am. Chem. Soc. 2011, 133,
13268-13271.
Keywords: acetals • electron-deficient compounds • palladium •
synthetic methods • vinylarenes
[42] N. Decharin, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 5732-5735.
[43] See Supporting Information for details.
[44] C. Fernández-Rivas, D. J. Cárdenas, B. Martín-Matute, Á. Monge, E.
Gutiérrez-Puebla, A. M. Echavarren, Organometallics 2001, 20, 2998-
3006.
[45] V. G. Albano, C. Castellari, M. E. Cucciolito, A. Panunzi, A. Vitagliano,
Organometallics 1990, 9, 1269-1276.
[46] J.-E. Báckvall, A. Gogoll, Tetrahedron Lett. 1988, 29, 2243-2246.
[47] A. Vasseur, J. Muzart, J. Le Bras, Eur. J. Org. Chem. 2015, 4053-4069.
[48] R. A. Michelin, G. Facchin, P. Uguagliati, Inorg. Chem. 1984, 23, 961-
969.
[1]
[2]
[3]
[4]
[5]
[6]
E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev.
2007, 107, 5318-5365.
S. Igarashi, Y. Haruta, M. Ozawa, Y. Nishide, H. Kinoshita, K. Inomata,
Chem. Lett. 1989, 18, 737-740.
T. Hosokawa, F. Nakajima, S. Iwasa, S.-I. Murahashi, Chem. Lett. 1990,
19, 1387-1390.
T. M. Meulemans, N. H. Kiers, B. L. Feringa, P. W. N. M. v. Leeuwen,
Tetrahedron Lett. 1994, 35, 455-458.
G. V. M. Sharma, A. S. Chander, K. Krishnudu, P. R. Krishna,
Tetrahedron Lett. 1997, 38, 9051-9054.
J. Nokami, H. Ogawa, S. Miyamoto, T. Mandai, S. Wakabayashi, J. Tsuji,
Tetrahedron Lett. 1988, 29, 5181-5184.
[7]
[8]
J. Lai, X. Shi, Y. Gong, L. Dai, J. Org. Chem. 1993, 58, 4775-4777.
N. T. Byrom, R. Grigg, B. Kongkathip, J. Chem. Soc., Chem. Commun.
1976, 216-217.
This article is protected by copyright. All rights reserved.