116
E.C. Constable et al. / Inorganic Chemistry Communications 15 (2012) 113–116
130.0 (CC1), 128.5 (CC2), 121.4 (CA3), 118.6 (CB3), 115.5 (CC3), 68.5 (Ca), 32.1
(CCH2), 29.9 (CCH2), 29.85 (CCH2), 29.81 (CCH2), 29.79 (CCH2), 29.6 (CCH2), 29.55
The role of van der Waals interactions between extended alkyl
chains is an expected feature of the solid state structure of 2, and
the observed lamellar structure mirrors those of related compounds.
We suggest that the preference for the formation of crystalline
[Zn2(μ-OAc)4(2)2] over a one-dimensional coordination polymer is
driven by the dominance of van der Waals interactions between the
alkyl tails of the coordinated 4′-(4-dodecyloxyphenyl)-4,2′:6′,4″-
terpyridine ligands.
(CCH2), 29.4 (Cb), 26.2 (CCH2), 14.3 (Cc). UV/VIS λmax/nm (5.0×10–5 mol dm–3
,
CH2Cl2), 233 (ε/103 dm3 mol−1 cm−1 32.8), 272 (34.7), 305sh (22.4). IR (solid,
cm–1) 2913 s, 2849 m, 1591 s, 1471 m, 1390 m, 1368w, 1294w, 1173 s, 1073w,
1059w, 819 s, 719w, 693w, 662 s. ESI-MS (CH2Cl2/MeOH) m/z 1009.9 [2 M+Na]+
(calc. 1009.6), 516.3 [M+Na]+ (base peak, calc. 516.3). After recrystallization
from CH2Cl2/MeOH: found C 80.13, H 8.00, N 8.50; C33H39N3O requires C 80.29, H
7.96, N 8.51%.
[12] A. Brun, G. Etemad-Moghadam, Synthesis (2002) 1385.
[13] F. Kröhnke, Synthesis (1976) 1.
[14]
C33H39N3O, M=493.67, colourless block, triclinic, space group P–1, a=10.850(2),
b=14.523(3), c=18.610(4) Å, α=111.285(16), β=91.129(15), γ=96.378(17)°,
U=2709.8(10) Å3, Z=4, Dc=1.210 Mg m–3, μ(Mo-Kα)=0.073 mm−1, T=173 K,
80308 reflections collected, 10059 unique, Rint=0.0602. Refinement of 8563 reflec-
tions (669 parameters) with I >2σ (I) converged at final R1=0.0502 (R1 all
data=0.0610), wR2=0.1191 (wR2 all data=0.1252), gof=1.100.
Acknowledgements
We thank the Swiss National Science Foundation and the University
of Basel for support. GZ thanks the Novartis Foundation, formerly
Ciba-Geigy Jubilee Foundation, for support. Rémy Pawlak is thanked
for preliminary STM measurements.
[15] G.W.V. Cave, C.L. Raston, J. Chem. Soc., Perkin Trans. I (2001) 3258.
[16] Inspection of the structures and packing of 4′-(4-octyloxyphenyl)-4,2′:6′,4″-terpyr-
idine (CCDC refcode XAYPOC) and 4′-(4-butyloxyphenyl)-4,2′:6′,4″-terpyridine
(CCDC refcode ACUKAK) shows that the alkyl chains are not fully extended.
[17] E.C. Constable, G. Zhang, C.E. Housecroft, M. Neuburger, J.A. Zampese, CrystEng-
Comm 12 (2010) 2146.
Appendix A. Supplementary material
[18] M. Barquín, J. Cancela, M.J. González Garmendia, J. Quintanilla, U. Amador,
Polyhedron 17 (1998) 2373.
[19] L. Hou, D. Li, Inorg. Chem. Commun. 8 (2005) 190.
[20] X.-Z. Li, M. Li, Z. Li, J.-Z. Hou, X.-C. Huang, D. Li, Angew.Chem. Int. 47 (2008) 6371.
[21] I.J. Bruno, J.C. Cole, P.R. Edgington, M.K. Kessler, C.F. Macrae, P. McCabe, J. Pearson,
R. Taylor, Acta Crystallogr., Sect. B 58 (2002) 389.
[22] Conquest v. 1.13, CSD version 5.32 with updates May 2011: refcodes AJURIG,
FEPRUO, GAQYUS, LOCTED, NOGFIZ, NOGFOF.
CCDC 831693 and 831694 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
[23] Solid Zn(OAc)2∙2H2O (21.8 mg, 0.10 mmol) was added to
a solution of 2
(24.7 mg, 0.05 mmol) in CH2Cl2/CH3OH (9 cm3, v/v 2:1). The reaction mixture
was stirred at room temperature for 30 min and the pale yellow solution was
then filtered. The filtrate was left to evaporate, and after 1 week, pale yellow
blocks had formed. The crystals were collected by filtration, washed with
MeOH, and dried in air. Yield: 24.5 mg, 72.6% (based on 2). m.p. 220–222 °C. 1H
NMR (500 MHz, CDCl3) δ / ppm 8.83 (d, J=5.5 Hz, 8H, HA2), 8.13 (d, J=6.0 Hz,
8H, HA3), 8.01 (s, 4H, HB3), 7.67 (d, J=8.7 Hz, 4H, HC2), 7.05 (d, J=8.7 Hz, 4H,
HC3), 4.03 (t, J=6.5 Hz, 4H, Ha), 2.11 (s, 6H, HMeCO2), 1.81 (m, 4H, Hb), 1.47 (m,
4H, HCH2), 1.40-1.18 (m, 32H, HCH2), 0.86 (t, J=6.9 Hz, 6H, Hc). 13 C NMR
(126 MHz, CDCl3) δ / ppm 180.2 (CC = O), 161.4 (CC4), 154.9 (CB2), 150.6 (CB4),
150.5 (CA2), 146.7 (CA4), 131.2 (CC1), 128.6 (CC2), 122.0 (CA3), 119.1 (CB3),
115.6 (CC3), 68.2 (Ca), 32.1 (CCH2), 29.9 (CCH2), 29.85 (CCH2), 29.82 (CCH2), 29.79
(CCH2), 29.6 (CCH2), 29.55 (CCH2), 29.4 (Cb), 26.2 (CCH2), 22.9 (CMeCO2), 14.3
(Cc). IR (solid, cm-1): 2922 m, 2848 m, 1635 s, 1605 m, 1596 m, 1519 m, 1423 s,
1398 m, 1296 m, 1240 m, 1180 m, 997w, 848 m, 829 s, 728w, 662 s. UV/VIS
References
[1] E.C. Constable, H.-J. Güntherodt, C.E. Housecroft, L. Merz, M. Neuburger, S. Schaffner,
Y. Tao, New J. Chem. 30 (2006) 1470.
[2] M.G.B. Drew, P.B. Iveson, M.J. Hudson, J.O. Liljenzin, L. Spjuth, P.-Y. Cordier, Å.
Enarsson, C. Hill, C. Madic, J. Chem. Soc., Dalton Trans. (2000) 821.
[3] X. Chen, Y. Ding, Y. Cheng, L. Wang, Synthetic Met. 160 (2010) 625.
[4] X. Chen, Q. Zhou, Y. Cheng, Y. Geng, D. Ma, Z. Xie, L. Wang, J. Lumin. 126 (2007) 81.
[5] S.-C. Yu, C.-C. Kwok, W.-K. Chan, C.-M. Che, Adv. Mater. 15 (2003) 1643.
[6] E.C. Constable, G. Zhang, E. Coronado, C.E. Housecroft, M. Neuburger, CrystEng-
Comm 12 (2010) 2139 and references therein.
[7] G.W.V. Cave, C.L. Raston, Chem. Commun. (2000) 2199.
[8] C.L. Raston, G.W.V. Cave, Chem. Eur. J. 10 (2004) 279.
[9] G.W.V. Cave, M.J. Hardie, B.A. Roberts, C.L. Raston, Eur. J. Org. Chem. (2001) 3227.
[10] G.W.V. Cave, C.L. Raston, J. Supramol. Chem. 2 (2002) 317.
[11] 4-Acetylpyridine (1.45 g, 8.00 mmol) was added to
λ
max/nm (5.0×10–5 mol dm–3, CH2Cl2), 231 (ε/103 dm3 mol−1 cm−1 59.6), 272
(59.1), 305sh (37.4). ESI-MS (CH2Cl2/MeOH) m/z 1295.9 [M – OAc]+ (base peak,
calc. 1295.5), 1110.0 [Zn(2)2(OAc)]+ (calc. 1109.6), 616.5 [Zn(2)(OAc)]+ (calc.
616.3). Found C 65.60, H 6.67, N 6.26; C37H45N3O5Zn requires C 65.63, H 6.70, N
6.21%.
a solution of 4-
dodecyloxybenzaldehyde (1.16 g, 4.00 mmol) in EtOH (20 cm3). A KOH pellet
(0.45 g, 12 mmol) was added to the solution, followed by aqueous NH3 (33%,
15 cm3). The reaction mixture was stirred at room temperature overnight, during
which time a white suspension formed. The white solid was collected by filtration,
washed well with H2O and EtOH, and dried in vacuo over P2O5. Yield: 1.19 g, 60%.
m.p. 143-145 °C. 1H NMR (500 MHz, CDCl3) δ / ppm 8.76 (d, J=6.0 Hz, 4H, HA2),
8.05 (d, J=6.0 Hz, 4H, HA3), 7.98 (s, 2H, HB3), 7.68 (d, J=8.7 Hz, 2H, HC2), 7.04 (d,
J=8.7 Hz, 2H, HC3), 4.02 (t, J=6.5 Hz, 2H, Ha), 1.81 (m, 2H, Hb), 1.46 (m, 2H,
HCH2), 1.40-1.18 (m, 16H, HCH2), 0.86 (t, J=6.8 Hz, 3H, Hc). 13 C NMR (126 MHz,
CDCl3) δ / ppm 160.8 (CC4), 155.4 (CB2), 150.9 (CB4), 150.8 (CA2), 146.4 (CA4),
[24]
C74H90N6O10Zn2, M=1354.30, yellow block, triclinic, space group P–1, a=10.753
(2), b=11.845(2), c=14.054(3) Å, α=82.14(3), β=75.51(3), γ=81.06(3)o,
U=1703.1(6) Å3, Z=1, Dc=1.320 Mg m–3, μ(Mo-Kα)=0.767 mm−1, T=173 K,
30240 reflections collected, 8163 unique, Rint=0.0826. Refinement of 7666 reflec-
tions (591 parameters) with I >2σ (I) converged at final R1=0.0418 (R1 all
data=0.0442), wR2=0.1151 (wR2 all data=0.1173), gof=1.049.