356
M. Thapa et al. / Bioorg. Med. Chem. Lett. 22 (2012) 353–356
cetin 11 and various arylcarboxylic acids, and C30- and C5-
substituted quercetins were synthesized from C3,C40,C7-O-triben-
zyl- and C3,C30,C40,C7-O-tetrabenzyl-protected quercetin, respec-
tively. Subsequent global removal of benzyl protecting groups
afforded substituted quercetins. C5-Esterification with gallic acid
12 failed, but alkylation was possible. The synthetic sequence is
short and amenable to large scale synthesis, and the synthesized
C3-analogs have comparable antiviral activity as that of EGCG
implying further modification at C3 is possible in improving
efficacy.
Table 1
Values of effective dose required to reduce the replication of virus by 50% (ED50) and
toxic dose for 50% cell death (TD50) of various natural and synthetic compounds
Compound
ED50 value
in
TD50 value
in
Therapeutic
index (TI)
lM
lM
Quercetin (1)
Isoquercetin (2)
EGCG (3)
Quercetin-3-gallate (4)
5
6
7
8
48.2
1.2
8.3
83.4
45.1
45.5
90.2
45.2
60.1
54.8
NDa
ND
1.7
37.6
5.5
9.9
2.3
2.7
2.3
—
9.1
19.4
22.6
24.1
>50
>50
>50
>50
Acknowledgments
9
10
29
—
—
—
ND
ND
This work has been supported by the National Institutes of
Health, National Institute of Allergy and Infectious Diseases (U01
AI081891).
a
ND: not determined due to high ED50 values. Note: Quercetin, isoquercetin and
EGCG were purchased from Sigma–Aldrich (St. Louis, MO).
Supplementary data
The inhibition of influenza
A virus (A/swine/OH/511445/
Supplementary data associated with this article can be found, in
2007[H1N1], Oh7) by compounds 1–10 and 29 was evaluated fol-
lowing a procedure reported previously.7 In brief, Madin-Darby ca-
nine kidney (MDCK) cells were infected with influenza virus Oh7
and incubated with each compound at various concentrations from
References and notes
0.1–150 lM in the presence of trypsin (10 lg/mL) for up to 4 days.
1. Russell, C. A.; Jones, T. C.; Barr, I. G.; Cox, N. J.; Garten, R. J.; Gregory, V.; Gust, I.
D.; Hampson, A. W.; Hay, A. J.; Hurt, A. C.; de Jong, J. C.; Kielso, A.; Klimov, A. I.;
Kageyama, T.; Komadina, N.; Lapedes, A. S.; Lin, Y. P.; Mosterin, A.; Obuchi, M.;
Odagiri, T.; Osterhaus, A. D.; Rimmelzwaan, G. F.; Shaw, M. W.; Skepner, E.;
Stohr, K.; Tashiro, M.; Fouchier, R. A.; Smith, D. J. Vaccine 2008, 26, D31.
2. Liu, A. –L.; Wang, H. –D.; Lee, S. M.; Wang, Y. –T.; Du, G. –H. Bioorg. Med. Chem.
2008, 16, 7141.
3. Lin, C. –W.; Tsai, F. –J.; Tsai, C. –H.; Lai, C. –C.; Wan, L.; Ho, T. –Y.; Hsieh, C. –C.;
Chao, P. –D. L. Antiviral Res. 2005, 68, 36.
4. Ryu, Y. B.; Kim, J. H.; Park, S. –J.; Chang, J. S.; Rho, M. –C.; Bae, K. –H.; Park, K. H.;
Lee, W. S. Bioorg. Med. Chem. Lett. 2010, 20, 971.
Cytopathic effects (CPE) of the cells were observed for each com-
pound. The effective doses for 50% virus reduction (ED50) and toxic
doses at 50% cell death (TD50) of the above compounds are summa-
rized in Table 1. Viral replication was also confirmed by immuno-
fluorescence assay and Western blot analysis with antibodies to
the viral nucleoprotein or whole influenza virus, respectively.
Among the tested compounds, isoquercetin, EGCG, quercetin-3-
gallate appear to have similar ED50 values against H1N1 virus,
and isoquercetin (2) is the most active compound with a ED50 va-
5. Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O. W.; Zhu, W.; Puah, C.
M.; Shen, X.; Jiang, H. Bioorg. Med. Chem. 2006, 14, 8295.
lue of 1.2
mined at 8.3 and 9.1
l
M. The ED50 of EGCG and quercetin-3-gallate was deter-
M, respectively, and therapeutic index (TI)
6. Choi, J. J.; Song, J. H.; Park, K. S.; Kwon, D. H. Eur. J. Pharm. Sci. 2009, 37, 329.
7. Kim, Y.; Narayanan, S.; Chang, K. –O. Antiviral Res. 2010, 88, 227.
8. Song, J. –M.; Lee, K. –H.; Seong, B. –L. Antiviral Res. 2005, 68, 66.
9. Nagle, D. G.; Ferreira, D.; Zhou, Y. –D. Phytochemistry 2006, 67, 1849.
10. Roth, M.; Timmermann, B. N.; Hagenbuch, B. Drug Metab. Dispos. 2011, 39, 920.
11. Soares-Da-Silva, P. M. V. A. PCT Int. Appl. WO 2004/084886, 2004, 36 pages.
12. Huang, H.; Jia, Q.; Ma, J.; Qin, G.; Chen, Y.; Xi, Y.; Lin, L.; Zhu, W.; Ding, J.; Jiang,
H.; Liu, H. Eur. J. Med. Chem. 2009, 44, 1982.
13. Belin, F.; Barthelemy, P.; Ruiz, K.; Lacombe, J. M.; Pucci, B. Helv. Chim. Acta 2003,
86, 247.
14. Hayashi, K.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1992, 33, 5075.
15. Yamada, K.; Ikezaki, M.; Umino, N.; Ohtsuka, H.; Itoh, N.; Ikezawa, K.;
Kiyomoto, A.; Iwakuma, T. Chem. Pharm. Bull. 1981, 29, 744.
16. Wang, R. E.; Kao, J. L.-F.; Hilliard, C. A.; Pandita, R. K.; Roti Roti, J. L.; Hunt, C. R.;
Taylor, J.-S. J. Med. Chem. 2009, 52, 1912.
17. Kaji, E.; Zen, S. Bull. Chem. Soc. Jpn. 1973, 46, 337.
18. Shi, A.; Nguyen, T. A.; Battina, S. K.; Rana, S.; Takemoto, D. J.; Chiang, P. K.; Hua,
D. H. Bioorg. Med. Chem. Lett. 2008, 18, 3364.
19. The authors have deposited atomic coordinates for the structures, compound
32 with the Cambridge Crystallographic Data Centre as supplementary
publication number CCDC 175022. The coordinates can be obtained on
request, from the Director, Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge, CB2 1EZ, U.K.
l
value of quercetin-3-gallate of 9.9 is slightly better than that of
EGCG of 5.5. C3-Dihydroxyl and hydroxylaminobenzoate analogs,
compounds 5–7, have ED50 values of 20–24 lM and similar TD50
values as that of EGCG indicating modification of the gallate moiety
(of EGCG and quercetin-3-gallate) retains the anti-influenza activ-
ity. Quercetin (1), without gallate function, is less effective with
ED50 and TD50 values of 48.2 and 83.4 lM, respectively. Despite
having a gallate function at C30, compound 8, and C30-3-aminopro-
pyloxy analog 9 and C5-propyloxy compound 10 are not effective
up to 50
effective up to 50
l
M. Benzylated analogs such as compound 29 are not
M. Therefore the TD50 values of compounds
l
8–10 and 29 were not determined. It appears that derivatization
of C30 and C5 led to lower antiviral activity.
In conclusion, various C3, C30, and C5 substituted quercetins
were synthesized and their anti-H1N1 activities were examined.
C3-Substituted quercetins were derived from a carbodiimide-acti-
vated coupling reaction of C30,C40,C7-O-tribenzyl-protected quer-