Journal of the American Chemical Society
Communication
Thus, a nanotube suspension was cast onto a fluoroalkyl-coated
glass substrate, prepatterned with PEDOT:PSS/Au/Ti
[PEDOT, poly(3,4-ethylenedioxythiophene); PSS, poly-
(styrenesulfonate)] and TiOx/Ti/Al electrodes with an 8−15
μm separation.8 Upon exposure to light with a power density of
46 mW cm−2 from the back side of the glass substrate, the film
sample displayed a PV response with an open-circuit voltage
(VOC) and a short-circuit current (ISC) of 0.66 V and 16 pA,
respectively (Figure 5e and 5f, red). ISC was switched promptly
and repeatedly upon turning on and off the light with an on/off
current ratio greater than 103 (Figure S8a, red).8 In sharp
contrast, a cast film of the nanotube of 3, likewise integrated
into the same device configuration, exhibited a very poor PV
response with VOC and ISC values of only 0.16 V and 0.9 pA,
respectively (Figure 5e and 5f, blue). ISC and VOC were
enhanced by increasing the light intensity (Figure S8b and S8c,
respectively)8 but much less so than the case of 2 having a
segregated D−A stacking. Although the device configuration
employed here is not appropriate for evaluating the power
conversion efficiencies, it is now clear that the nanotube of 2 is
superior to that of 3 for PV applications.
In conclusion, we developed PZn−C60 nanotubes with
segregated and alternately stacked donor (D; PZn)/acceptor
(A; C60) configurations and demonstrated clear geometrical
effects on optoelectronic outputs. The nanotube from 2 with a
coaxial D−A heterojunction along the tube axis (Figure 4a)
displays much better photoconducting properties than that
from 3 with an alternate D/A stacking geometry (Figure 4b).
Together with its explicit ambipolar carrier transport character,
the PV output of the former nanotube is superior to the latter.
The results presented here contribute to the progress of
bottom-up nanoscale organic electronics.
REFERENCES
■
(1) (a) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons,
̈
̈
E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119−1122.
(b) Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.;
Durrant, J. R.; Bradley, D. D. C.; Giles, M.; Mcculloch, I.; Ha, C.-S.;
Ree, M. Nat. Mater. 2006, 5, 197−203. (c) Huang, Y.-S.; Westenhoff,
S.; Avilov, I.; Sreearunothai, P.; Hodgkiss, J. M.; Deleener, C.; Friend,
R. H.; Beljonne, D. Nat. Mater. 2008, 7, 483−489. (d) Beaujuge, P.
M.; Frec
́
het, J. M. J. J. Am. Chem. Soc. 2011, 133, 20009−20029.
(2) (a) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007,
̈
́
107, 1324−1338. (b) Thompson, B. C.; Frechet, J. M. J. Angew. Chem.,
Int. Ed. 2008, 47, 58−77. (c) Pisula, W.; Kastler, M.; Wasserfallen, D.;
Robertson, J. W. F.; Nolde, F.; Kohl, C.; Mullen, K. Angew. Chem., Int.
̈
Ed. 2006, 45, 819−823. (d) Wei, Z.; Jin, W.; Fukushima, T.; Saeki, A.;
Seki, S.; Aida, T. Science 2011, 334, 340−343.
(3) (a) van der Boom, T.; Hayes, R. T.; Zhao, R. T.; Bushard, P. J.;
Weiss, E. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582−
9590. (b) Georgakilas, V.; Pellarini, F.; Prato, M.; Guldi, D. M.; Melle-
Franco, M.; Zerbetto, F. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5075−
5080. (c) Neuteboom, E. E.; Maskers, S. C. J.; van Hal, P. A.; van
Duren, J. K. J.; Meijer, E. W.; Janssen, R. A.; Dupin, H.; Pourtois, G.;
́
Cornil, J.; Lazzaroni, R.; Bredas, J.-L.; Beljonne, D. J. Am. Chem. Soc.
2003, 125, 8625−8638. (d) Beckers, E.; Maskers, S. C. J.; Schenning,
A. P. H. J.; Chen, Z.; Wurthner, F.; Marsal, P.; Beljonne, D.; Cornil, J.;
̈
Janssen, R. A. J. J. Am. Chem. Soc. 2006, 128, 649−657. (e) Sisson, A.
L.; Sakai, N.; Banerji, N.; Furstenberg, A.; Vauthey, E.; Matile, S.
̈
Angew. Chem., Int. Ed. 2008, 47, 3727−3729. (f) Kira, A.; Umeyama,
T.; Matano, Y.; Yoshida, K.; Isoda, S.; Park, J. K.; Kim, D.; Imahori, H.
J. Am. Chem. Soc. 2009, 131, 3198−3200. (g) Tu, S.; Kim, S. H.;
Joseph, J.; Modarelli, D. A.; Parquette, J. R. J. Am. Chem. Soc. 2011,
133, 19125−19130.
(4) Li, W.-S.; Saeki, A.; Yamamoto, Y.; Fukushima, T.; Seki, S.; Ishii,
N.; Kato, K.; Takata, M.; Aida, T. Chem.Asian J. 2010, 5, 1566−
1572.
(5) (a) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.;
Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science 2006,
314, 1761−1764. (b) Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.;
Tagawa, S.; Ishii, N.; Aida, T. J. Am. Chem. Soc. 2007, 129, 9276−9277.
(c) Yamamoto, Y.; Zhang, G.; Jin, W.; Fukushima, T.; Ishii, N.; Saeki,
A.; Seki, S.; Tagawa, S.; Minari, T.; Tsukagoshi, K.; Aida, T. Proc. Natl.
Acad. Sci. U.S.A. 2009, 106, 21051−21056. (d) He, Y.; Yamamoto, Y.;
Jin, W.; Fukushima, T.; Saeki, A.; Seki, S.; Ishii, N.; Aida, T. Adv.
Mater. 2010, 22, 829−832. (e) Saeki, A.; Yamamoto, Y.; Koizumi, Y.;
Fukushima, T.; Aida, T.; Seki, S. J. Phys. Chem. Lett. 2011, 2, 2549−
2554.
(6) Li, W.-S.; Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.;
Tagawa, S.; Masunaga, H.; Sasaki, S.; Takata, M.; Aida, T. J. Am. Chem.
Soc. 2008, 130, 8886−8887.
(7) Hizume, Y.; Tashiro, K.; Charvet, R.; Yamamoto, Y.; Saeki, A.;
Seki, S.; Aida, T. J. Am. Chem. Soc. 2010, 132, 6628−6629.
(8) See Supporting Information.
(9) (a) Okada, S.; Segawa, H. J. Am. Chem. Soc. 2003, 125, 2792−
2796. (b) Yamaguchi, T.; Kimura, T.; Matsuda, H.; Aida, T. Angew.
Chem., Int. Ed. 2004, 43, 6350−6355. (c) Sakata, A.; Kobuke, Y. Org.
Biomol. Chem. 2007, 5, 1679−1691. (d) Tsuda, A.; Alam, Md. A.;
Harada, T.; Yamaguchi, T.; Ishii, N.; Aida, T. Angew. Chem., Int. Ed.
2007, 46, 8918−8202.
(10) Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.;
Aida, T.; Sakamoto, S.; Yamaguchi, K. Angew. Chem., Int. Ed. 2001, 40,
1858−1861.
ASSOCIATED CONTENT
■
S
* Supporting Information
Details of synthesis, self-assembly, MALDI-TOF mass spectra,
NMR spectra, electronic absorption spectra, DPV, contact
angles, fluorescence spectra, SEM, TEM, ED, and PV data. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
Present Address
○ADOCIA, 115 avenue Lacassagne, 69003 Lyon, France.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(11) (a) Armaroli, N.; Marconi, G.; Echegoyen, L.; Bourgeois, J.-P.;
Diedrich, F. Chem.Eur. J. 2000, 6, 1629−1645. (b) Charvet, R.;
Jiang, D.-L.; Aida, T. Chem. Commun. 2004, 2664−2665. (c) Imahori,
H.; Ueda, M.; Kang, S.; Hayashi, S.; Kaji, H.; Seki, S.; Saeki, A.;
Tagawa, S.; Umeyama, T.; Matano, Y.; Yoshida, K.; Isoda, S.; Shiro,
M.; Tkachenko, N. V.; Lemmetyinen, H. Chem.Eur. J. 2007, 13,
10182−10193.
The synchrotron radiation experiments were performed at
BL02B2 and BL44B2 in SPring-8 with the approval of JASRI
(Proposal Nos. 2008A1644 and 2008B1777, the Priority
Nanotechnology Support Program) and RIKEN (Proposal
No. 20100024), respectively. This work was partly supported
by a Grant-in-Aid for Young Scientist B (23750144) from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan, and Kato Science Foundation (H23_2006).
(12) Saeki, A.; Seki, S.; Takenobu, T.; Iwasa, Y.; Tagawa, S. Adv.
Mater. 2008, 20, 920−923.
2527
dx.doi.org/10.1021/ja211334k | J. Am. Chem.Soc. 2012, 134, 2524−2527