Table 2 Photophysical data of selected Ir complexes in CH2Cl2 at 298 K
Complex
Absorption lmax/nm (e/Mꢀ1 cmꢀ1
)
Emission lmax/nm
t/ms
Flum ꢁ 102
40
0.84
0.81
1.1
2.0
1.7
1.9
1
300 (35 500), 343 (15 900), 398 sh (11 900)
303 (35 600), 346 (40 500), 416 (19 500), 485 sh (5290)
344 (57 400), 425 (27 000), 484 sh (9150)
340 (75 700), 426 (36 800), 486 sh (13 200)
322 (69 900), 411 (30 500), 476 sh (11 700)
322 (53 400), 411 (23 300), 477 sh (8700)
326 (42 900), 408 (19 100), 472 sh (8020)
548, 592, 643 sh
677, 742, 812 sh
676, 740, 813 sh
673, 738
652, 712, 795 sh
654, 714, 798 sh
645, 703, 784 sh
7.1
1.1
1.3
1.5
2.4
2.1
2.8
2a
2b
2c
4c
5c
8c
Notes and references
1 Z. Liu, Z. Bian and C. Huang, Topics in Organometallic Chemistry,
in Organometallic Materials for Optics, ed. H. Le Bozec and
V. Guerchais, Springer, Heidelberg, Germany, 2010, vol. 28, p. 113.
2 L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and
F. Barigelletti, Top. Curr. Chem., 2007, 281, 143.
3 (a) M. G. Colombo, T. C. Brunold, T. Riedener and H. U. Gudel,
Inorg. Chem., 1994, 33, 545; (b) A. Tsuboyama, H. Iwawaki,
M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama,
S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno,
J. Am. Chem. Soc., 2003, 125, 12971; (c) K. A. McGee and
K. R. Mann, Inorg. Chem., 2007, 46, 7800.
4 Highly Efficient OLEDs with Phosphorescent Materials, ed. H. Yersin,
Wiley-VCH, Weinheim, 2008.
5 G. Chelucci, D. Muroni, A. Saba and F. Soccolini, J. Mol. Catal.
A: Chem., 2003, 197, 27.
6 T. Kowada, Y. Matsuyama and K. Ohe, Synlett, 2008, 1902.
7 S.-H. Kim and R. D. Rieke, Tetrahedron, 2010, 66, 3135.
8 (a) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007,
107, 174; (b) T. Satoh and M. Miura, Chem. Lett., 2007, 200; (c) B.-J. Li,
S.-D. Yang and Z.-J. Shi, Synlett, 2008, 949; (d) F. Bellina and R. Rossi,
Tetrahedron, 2009, 65, 10269; (e) J. Roger, A. L. Gottumukkala and
H. Doucet, ChemCatChem, 2010, 2, 20.
Fig. 2 UV-visible absorption spectra of complexes 1, 2c, 4c, 5c and 8c
in CH2Cl2 solution at 298 K.
9 For selected examples of palladium-catalysed direct arylation from
our laboratory: (a) A. L. Gottumukkala and H. Doucet, Adv.
Synth. Catal., 2008, 350, 2183; (b) A. L. Gottumukkala, F. Derridj,
S. Djebbar and H. Doucet, Tetrahedron Lett., 2008, 49, 2926;
(c) Y. Fall, H. Doucet and M. Santelli, ChemSusChem, 2009,
2, 153; (d) J. J. Dong, J. Roger, F. Pozgan and H. Doucet, Green
Chem., 2009, 11, 1832; (e) J. Roger and H. Doucet, Adv. Synth.
Catal., 2009, 351, 1977; (f) M. Ionita, J. Roger and H. Doucet,
ChemSusChem, 2010, 3, 367; (g) L. Chen, J. Roger, C. Bruneau,
P. H. Dixneuf and H. Doucet, Chem. Commun., 2011, 47, 1872;
(h) M. Baloch, R. Jacob Roy, D. Roy, K. Beydoun and H. Doucet,
RSC Adv., 2011, 1, 1527.
10 A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga,
A. Miyafuji, T. Nakata, N. Tani and Y. Aoyagi, Heterocycles,
1990, 31, 1951.
11 For selected examples of palladium-catalysed direct arylation of thio-
phenes: (a) S. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura and
M. Nomura, Bull. Chem. Soc. Jpn., 1998, 71, 467; (b) L. Lavenot,
C. Gozzi, K. Ilg, I. Orlova, V. Penalva and M. Lemaire, J. Organomet.
Chem., 1998, 567, 49; (c) B. Glover, K. A. Harvey, B. Liu, M. J. Sharp
and M. F. Tymoschenko, Org. Lett., 2003, 5, 301; (d) K. Masui,
A. Mori, K. Okano, K. Takamura, M. Kinoshita and T. Ikeda,
Org. Lett., 2004, 6, 2011; (e) A. Yokooji, T. Satoh, M. Miura and
M. Nomura, Tetrahedron, 2004, 60, 6757; (f) M. Nakano, H. Tsurugi,
T. Satoh and M. Miura, Org. Lett., 2008, 10, 1851; (g) J. Roger,
F. Pozgan and H. Doucet, Green Chem., 2009, 11, 425;
(h) S. Yanagisawa, K. Ueda, H. Sekizawa and K. Itami, J. Am. Chem.
Soc., 2009, 131, 14622; (i) J. J. Dong, J. Roger and H. Doucet,
Tetrahedron Lett., 2009, 50, 2778; (j) B. Liegault, D. Lapointe,
L. Caron, A. Vlassova and K. Fagnou, J. Org. Chem., 2009, 7, 1826;
(k) J. J. Dong, J. Roger, C. Verrier, T. Martin, R. Le Goff, C. Hoarau
and H. Doucet, Green Chem., 2010, 12, 2053.
Fig. 3 Emission spectra of complexes 1, 2c, 4c, 5c and 8c in CH2Cl2
solution at 298 K.
variety of aryl bromides using a Pd(OAc)2 catalyst. The thiophene
ring was regioselectively arylated at the C5 position. This method
provides facile access to arylated Ir complexes under mild reaction
conditions. Moreover, it should be noted that a range of func-
tionalities such as nitrile, nitro or trifluoromethyl on the aryl
bromide are tolerated. Such functional group tolerance allows the
easy modification of the electronic structures and, as a conse-
quence, the photophysical properties of the molecules. We anti-
cipate that these Pd-catalysed syntheses will provide a powerful
new tool for the preparation of novel light-emitting materials.
12 (a) Y. G. Fang, M. I. J. Polson and G. S. Hanan, Inorg. Chem., 2003,
42, 5; (b) K. J. Arm and J. A. G. Williams, Chem. Commun., 2005, 230.
13 (a) Y.-L. Chen, S.-W. Li, Y. Chi, Y.-M. Cheng, S.-C. Pu, Y. S. Yeh and
P.-T. Chou, ChemPhysChem, 2005, 6, 2012; (b) D. N. Kozhevnikov,
V. N. Kozhevnikov, M. Z. Shafikov, A. M. Prokhorov, D. W. Bruce
and J. A. G. Williams, Inorg. Chem., 2011, 50, 3804.
K. B. is grateful to the CNRS and ‘‘Region Bretagne’’ for a
´
PhD grant. This work was supported by LEA CNRS MMC
Rennes-Durham and ANR COMET.
c
1262 Chem. Commun., 2012, 48, 1260–1262
This journal is The Royal Society of Chemistry 2012