Notes and references
1 (a) M. Anzini, A. Capelli, S. Vomero, G. Giorgi, T. Langer,
G. Bruni, M. R. Romero and A. S. Basile, J. Med. Chem., 1996,
39, 4275; (b) L. C. Chang, K. P. L. Bhat, E. Pisha, E. J. Kennelly,
H. H. S. Fong, J. M. Pezzuto and A. D. Kinghorn, J. Nat. Prod.,
1998, 61, 1257; (c) T. R. Belliotti, W. A. Brink, S. R. Kesten,
J. R. Rubin, D. J. Wustrow, K. T. Zoski, S. Z. Whetzel,
A. E. Corbin, T. A. Pugsley, T. G. Heffner and L. D. Wise, Bioorg.
Med. Chem. Lett., 1998, 8, 1499; (d) J. L. Wood, D. T. Petsch,
B. M. Stoltz, E. M. Hawkins, D. Elbaum and D. R. Stover,
Synthesis, 1999, 1529; (e) T. Honma, K. Hayashi, T. Aoyama,
N. Hashimoto, T. Machida, K. Fukasawa, T. Iwama, C. Ikeura,
M. Ikuta, I. Suzuki-Takahashi, Y. Iwasawa, T. Hayama,
S. Nishimura and H. Morishima, J. Med. Chem., 2001, 44, 4615;
(f) C. Riedinger, J. A. Endicott, S. J. Kemp, L. A. Smyth,
A. Watson, E. Valeur, B. T. Golding, R. J. Griffin, I. R.
Hardcastle, M. E. Noble and J. M. McDonnell, J. Am. Chem.
Soc., 2008, 130, 16038.
2 (a) E. Li, L. Jiang, L. Guo, H. Zhang and Y. Che, Bioorg. Med.
Chem., 2008, 16, 7894; (b) N. Slavov, J. Cvengros, J.-M. Neudoerfl
and H.-G. Schmalz, Angew. Chem., Int. Ed., 2010, 49, 7588.
3 (a) L. A. Sorbera, P. A. Leeson, J. Silvestre and J. Castaner,
Drugs Future, 2001, 26, 651; (b) T. L. Stuk, B. K. Assink, R. C.
Bates, Jr., D. T. Erdman, V. Fedij, S. M. Jennings, J. A. Lassig,
R. J. Smith and T. L. Smith, Org. Process Res. Dev., 2003,
7, 851.
Fig. 2 Plausible mechanism.
above. However, the conversion did not proceed when ethyl
crotonate was used.
The KIE value (kH/kD = 1) of the C–H olefination might
suggest that the C–H cleavage is fast, thus not involved as the
rate-limiting step (eqn (4)). The postulated mechanism is
summarized in Fig. 2. Rapid C–H activation of 4 generates
a five-membered rhodacycle (I), which subsequently undergoes
the well-established mechanistic route of C–H olefination to
generate a Rh–H complex (II). Two pathways (A and B) could
possibly lead to the desired product 6. Path B is the commonly
accepted C–H olefination/C–N bond formation sequence,
however, without experimental evidence.14 To probe this
pathway, deuterium-labelled olefin 7 was synthesized and
subjected to the standard conditions (eqn (5)). The appearance
of proton on the methylene position indicates that the adduct 8
might come from the intermediate IV (Fig. 2), since the acidic
N–H (or N–D) is exchangeable with external protons.
4 J. Wrobel, A. Dietrich, S. A. Woolson, J. Millen, M. McCaleb,
M. C. Harrison, T. C. Hohman, J. Sredy and D. Sullivan, J. Med.
Chem., 1992, 35, 4613.
5 For selected reviews of C–H olefination, see: (a) I. Moritani and
Y. Fujiwara, Synthesis, 1973, 524; (b) C. Jia, T. Kitamura and
Y. Fujiwara, Acc. Chem. Res., 2001, 34, 633; (c) E. M. Beccalli,
G. Broggini, M. Martinelli and S. Sottocornola, Chem. Rev., 2007,
107, 5318; (d) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu,
Angew. Chem., Int. Ed., 2009, 48, 5094; (e) D. A. Colby,
R. G. Bergman and J. A. Ellman, Chem. Rev., 2010, 110, 624;
(f) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147;
(g) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215.
6 For intramolecular examples, see: (a) B. M. Trost, S. A. Godleski
and J. P. Genet, J. Am. Chem. Soc., 1978, 100, 3930; (b) P. S. Baran
and E. J. Corey, J. Am. Chem. Soc., 2002, 124, 7904; (c) N. K.
Garg, D. D. Caspi and B. M. Stoltz, J. Am. Chem. Soc., 2004,
126, 9552; (d) E. M. Beck, R. Hatley and M. J. Gaunt, Angew.
Chem., Int. Ed., 2008, 47, 3004; (e) A. L. Bowie, Jr. and
D. Trauner, J. Org. Chem., 2009, 74, 1581; for intermolecular
example, see: (f) F. W. Patureau, T. Besset and F. Glorius, Angew.
Chem., Int. Ed., 2011, 50, 1064.
7 (a) C. Zhu and J. R. Falck, Org. Lett., 2011, 13, 1214; also see:
(b) C. Zhu, W. Xie and J. R. Falck, Chem.–Eur. J., 2011, 17, 12591.
8 For review, see: T. Satoh and M. Miura, Chem.–Eur. J., 2010,
16, 11212.
9 (a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc.,
2010, 132, 6908; (b) T. K. Hyster and T. Rovis, J. Am. Chem. Soc.,
2010, 132, 10565; (c) S. Mochida, N. Umeda, K. Hirano, T. Satoh
and M. Miura, Chem. Lett., 2010, 744; (d) G. Song, D. Chen,
C.-L. Pan, R. H. Crabtree and X. Li, J. Org. Chem., 2010, 75, 7487.
10 (a) F. Wang, G. Song and X. Li, Org. Lett., 2010, 12, 5430;
(b) S. Rakshit, C. Grohmann, T. Resset and F. Glorius, J. Am.
Chem. Soc., 2011, 133, 2350; also see: (c) F. W. Patureau and
F. Glorius, J. Am. Chem. Soc., 2010, 132, 9982; (d) T. Besset,
N. Kuhl, F. W. Patureau and F. Glorius, Chem.–Eur. J., 2011,
17, 7167; (e) J. Willwacher, S. Rakshit and F. Glorius, Org. Biomol.
Chem., 2011, 9, 4736.
ð4Þ
ð5Þ
In summary, we describe a tandem rhodium catalyzed C–H
olefination of N-benzoylsulfonamides with internal olefins followed
by C–N bond formation. A new N-substituted quaternary
centre is formed during the reaction thus providing efficient access
to a series of 3,3-disubstituted isoindolinones. Other applications
of this methodology are currently ongoing in our laboratory.
We thank the NIH (GM31278) and the Robert A. Welch
Foundation (GL625910) for financial support.
11 For details, see ESIw.
12 For X-ray crystallographic information of 6a, see ESIw (CIF).
13 HNMR spectrum of crude reaction as the proof is attached in
ESIw.
14 For selected examples, see: (a) M. Miura, T. Tsuda, T. Satoh,
S. Pivsa-Art and M. Nomura, J. Org. Chem., 1998, 63, 5211;
(b) M. Wasa, K. M. Engle and J.-Q. Yu, J. Am. Chem. Soc., 2010,
132, 3680; (c) B. S. Kim, S. Y. Lee and S. W. Youn, Chem.–Asian J.,
2011, 6, 1952.
c
1676 Chem. Commun., 2012, 48, 1674–1676
This journal is The Royal Society of Chemistry 2012