reducing catalyst loading, while preserving catalyst reac-
tivity, has been a major challenge in chiral NHC catalysis.
We described here the development of highly enantiose-
lective Stetter cyclizations to densely functionalized cyclo-
pentenones. We discovered that a catalytic amount of
external acetic acid could stabilize the activeNHC catalyst,
which enables efficient reactions with low catalyst loadings
(down to 2.5 mol %).
Table 1. Correlation of NHC Reactivity with Brønsted Bases
and AcOH Cocatalyst
Scheme 1. Enantioselective Triene Cyclizations to Densely
Functionalized Cyclopentenones
The proposed transformations were explored with a
geometrically defined (2E,4Z,6E) triene (2).5 Preliminary
catalyst screening with several privileged chiral NHC
catalysts revealed that a chiral aminoindanol-derived tria-
zolium catalyst (1) was most effective in converting the
triene (2) to the cyclopentenone (3) (Table 1).6À8 It is
important to note that the catalytic efficiency of 1 seemed
to depend crucially on the Brønsted base and acid
a Yields refer to isolated yields after column chromatography. b Final
yields are obtained after 48 h, when there is no further conversion. c ee
was determined by chiral HPLC. Absolute stereochemistry was deter-
mined by X-ray crystallographic analysis of its derivative. d 0.1 equiv of
AcOH was applied.
(5) For details of substrate synthesis, see Supporting Information.
(6) Absolute stereochemistry of the product was determined by X-ray
crystallographic analysis of its derivative.
(7) For a selection of privileged chiral NHCs, see: (a) Enders, D.;
Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1217. (b) Knight,
R. L.; Leeper, F. J. Tetrahedron Lett. 1997, 38, 3611. (c) Dvorak, C. A.;
Rawal, V. H. Tetrahedron Lett. 1998, 39, 2925. (d) Kerr, M. S.; de
Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298. (e) He, M.;
Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418. (f)
Mennen, S. M.; Blank, J. T.; Tran-Dube, M. B.; Imbriglio, J. E.; Miller,
S. J. Chem. Commun. 2005, 195. (g) Piel, I.; Steinmetz, M.; Hirano, K.;
Froehlich, R.; Grimme, S.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50,
4983.
(8) For a selection of application of Mes-substituted catalyst 1a in
asymmetric catalysis, see: (a) Chiang, P. C.; Kaeobamrung, J.; Bode,
J. W. J. Am. Chem. Soc. 2007, 129, 3520. (b) He, M.; Bode, J. W. J. Am.
Chem. Soc. 2008, 130, 418. (c) Kaeobamrung, J.; Kozlowski, M. C.;
Bode, J. W. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20661. (d)
Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P. G.; Bode, J. W.
J. Am. Chem. Soc. 2010, 132, 8810. (e) Mahatthananchai, J.; Zheng,
P. G.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 1673. (f) Fang, X. Q.;
Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2011, 50,
1910. (g) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 10098. (h) Phillips, E. M.; Reynolds, T. E.;
Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416. (i) Raup, D. E. A.;
Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766. (j)
Cardinal-David, B.; Raup, D. E. A.; Scheidt, K. A. J. Am. Chem. Soc.
2010, 132, 5345. (k) Cohen, D. T.; Cardinal-David, B.; Scheidt, K. A.
Angew. Chem., Int. Ed. 2011, 50, 1678. (l) Rong, Z. Q.; Jia, M. Q.; You,
S. L. Org. Lett. 2011, 13, 4080. (m) Zhu, Z. Q.; Zheng, X. L.; Jiang, N. F.;
Wan, X.; Xiao, J. C. Chem. Commun. 2011, 8670.
cocatalysts. To our surprise, well-established reaction
conditions for intramolecular Stetter cyclizations were
ineffective in this system: Catalyst 1 barely achieved a
single turnover, in the presence of strong non-nucleophilic
bases, including KHMDS and KOt-Bu (entries 1À2).9
Neither organic bases (entries 3À5) nor K2CO3 (entry 6)
could effectively turn over the catalytic cycle. The incom-
plete conversion under these conditions suggests that the
integrity of the catalyst was largely compromised, a finding
rarely reported in the literature.
The aforementioned Brønsted bases (entries 1À6) are
capable of generating sufficient quantities of NHC through
deprotonation. However, the data suggest the decomposi-
tion of active catalyst significantly compromises the reaction
efficiency (turnover number of 1 < 3.0). For this reason, we
explored carboxylates that have a much weaker Brønsted
basicity, which emerge as uniquely effective reagents (entries
7À12).10 A catalytic amount (20 mol % each) of NaOAc
and triazolium salt (1) (entry 7) cocatalyzed a highly
enantioselective reaction with excellent efficiency (97% ee
and 85% yield within 5 h). Although NaOBz (entries 8)
provided a less impressive rate acceleration compared to
(9) For standard conditions to generate chiral NHCs, see: (a) Kerr,
M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876. (b) de Alaniz, J. R.;
Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284. (c) Reynolds, N. T.; Rovis,
T. J. Am. Chem. Soc. 2005, 127, 16406. (d) Liu, Q.; Rovis, T. J. Am.
Chem. Soc. 2006, 128, 2552. (e) DiRocco, D. A.; Oberg, K. M.; Dalton,
D. M.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10872. (f) Lathrop, S. P.;
Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628. (g) Vora, H. U.; Rovis, T.
J. Am. Chem. Soc. 2010, 132, 2860. (h) DiRocco, D. A.; Rovis, T. J. Am.
Chem. Soc. 2011, 133, 10402. (i) Kawanaka, Y.; Phillips, E. M.; Scheidt,
K. A. J. Am. Chem. Soc. 2009, 131, 18028. (j) Jousseaume, T.; Wurz,
N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1410.
(10) For a recent example using carboxylates in chiral NHC catalysis,
see: Zhao, X. D.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133,
12466.
Org. Lett., Vol. 14, No. 3, 2012
859