UPDATES
Defeo-Jones, R. E. Jones, G. D. Hartman, J. R. Huff,
H. E. Huber, M. E. Duggan, C. W. Lindsley, Bioorg.
Med. Chem. Lett. 2005, 15, 905; c) G. Claassen, E. Brin,
C. Crogan-Grundy, M. T. Vaillancourt, H. Z. Zhang,
S. X. Cai, J. Drewe, B. Tseng, S. Kasibhatla, Cancer Lett.
2009, 274, 243.
1
2
3
4
5
6
7
8
9
mediate D, and converted D to the oxonium inter-
mediate E. Next, 5-exo cyclization and the abstraction
of a proton from F gave the oxindole G. Finally,
reductive elimination of PhI from G afforded the five-
membered oxindole product 2s’.
In summary, we have described a novel approach
for the construction of the six-membered 3-arylquino-
lin-2-one framework via a hypervalent iodine-medi-
ated direct oxidative C(sp2)ÀC(sp2) bond formation of
[3] M. Patel, J. McHugh, J. Robert, B. C. Cordova, R. M.
Klabe, L. T. Bacheler, S. Erickson-Viitanen, J. D. Rodg-
ers, Bioorg. Med. Chem. Lett. 2001, 11, 1943.
[4] R. M. Forbis, K. L. Rinehart, J. Am. Chem. Soc. 1973,
95, 5003.
[5] A. L. Hopkins, J. Ren, J. Milton, R. J. Hazen, J. H.
Chan, D. I. Stuart, D. K. Stammers, J. Med. Chem. 2004,
47, 5912.
[6] For selected examples, see: a) T. N. Glasnov, W. Stadlba-
uer, C. O. Kappe, J. Org. Chem. 2005, 70, 3864; b) J. M.
Kraus, C. L. M. J. Verlinde, M. Karimi, G. I. Lepesheva,
M. H. Gelb, F. S. Buckner, J. Med. Chem. 2009, 52,
1639; c) J. M. Kraus, H. B. Tatipaka, S. A. McGuffin,
N. K. Chennamaneni, M. Karimi, J. Arif, C. L. M. J.
Verlinde, F. S. Buckner, M. H. Gelb, J. Med. Chem.
2010, 53, 3887; d) A. Dolꢂans-Jordheim, J.-B. Veron, O.
Fendrich, E. Bergeron, A. Montagut-Romans, Y.-S.
Wong, B. Furdui, J. Freney, C. Dumontet, A. Boumend-
jel, ChemMedChem 2013, 8, 652; e) R. W. Carling, P. D.
Leeson, K. W. Moore, J. D. Smith, C. R. Moyes, I. M.
Mawer, S. Thomas, T. Chan, R. Baker, J. Med. Chem.
1993, 36, 3397.
10 N,2-diarylacrylamide derivatives. The methodology
11 features readily available starting materials, mild and
12 transition metal-free reaction conditions, and toler-
13 ance of a wide range of functional groups. The
14 importance of the 3-arylquinolin-2-one compounds
15 should render this method a useful organic synthetic
16 tool.
17
18
19
20
Experimental Section
General Procedure for Preparation of 3-Aryl-
quinolin-2-ones 2
21
22
23
To a solution of 1 (1.0 mmol) in DCM (6.0 mL) was slowly
added PhI(O2C-t-Bu)2 (1.2 mmol). Then,
a solution of
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
.
BF3 Et2O (0.5 mmol) in DCM (4 mL) was added dropwise to
the above mixture under stirring. The resulting mixture
remained at room temperature under stirring, and the
progress of the reaction was monitored by TLC. Upon
completion, the reaction mixture was poured into cold water
(20 mL) and extracted with CH2Cl2 (3320 mL). The com-
bined organic layer was washed with brine (50 mL) before
being dried over Na2SO4. The solvent was removed under
vacuum and the residue was purified by silica gel chromatog-
raphy, using a mixture of PE/EA to afford the desired
product 2.
[7] For some examples, see: a) J. P. Michael, Nat. Prod.
Rep. 1995, 12, 465; b) J. B. Hanuman, A. Katz, Nat.
Prod. Lett. 1993, 3, 227.
[8] For selected examples, see: a) M. A. Alonso, M. M.
Blanco, C. Avendano, J. C. Menendez, Heterocycles
1993, 36, 2315; b) X. Liu, X. Xin, D. Xiang, R. Zhang, S.
Kumar, F. Zhou, D. Dong, Org. Biomol. Chem. 2012,
10, 5643; c) B. Joseph, F. Darro, A. Behard, B. Lesur, F.
Collignon, C. Decaestecker, A. Frydman, G. Guillau-
met, R. J. Kiss, J. Med. Chem. 2002, 45, 2543; d) Y.
Zhang, Y. Fang, H. Liang, H. Wang, K. Hu, X. Liu, X.
Yi, Y. Peng, Bioorg. Med. Chem. Lett. 2013, 23, 107.
[9] For selected examples, see: a) C. Jia, D. Piao, T.
Kitamura, Y. Fujiwara, J. Org. Chem. 2000, 65, 7516;
b) R. Manikandan, M. Jeganmohan, Org. Lett. 2014, 16,
3568; c) D. V. Kadnikov, R. C. Larock, J. Org. Chem.
2004, 69, 6772.
Acknowledgements
We acknowledge the National Science Foundation of China
(#21472136), Tianjin Research Program of Application
Foundation and Advanced Technology (#15JCZDJC32900)
and the National Basic Research Project (#2014CB932201)
for financial support.
[10] P. J. Manley, M. T. Bilodeau, Org. Lett. 2004, 6, 2433.
[11] W.-P. Mai, J.-T. Wang, L.-R. Yang, Y.-M. Xiao, P. Mao,
L.-B. Qu, Org. Lett. 2014, 16, 204.
References
[1] For selected examples, see: a) P. M. Fresneda, P. Molina,
S. Delgado, Tetrahedron Lett. 1999, 40, 7275; b) W. E.
Campell, K. P. Finch, P. A. Bean, N. Finkelstein, Phy-
tochemistry 1987, 26, 33; c) J. He, U. Lion, I. Sattler,
F. A. Gollmick, S. Grabley, J. Cai, M. Meiners, H.
Schunke, K. Schaumann, U. Dechert, M. Krohn, J. Nat.
Prod. 2005, 68, 1397; d) J. Toum, A. Moquette, Y.
Lamotte, O. Mirguet, Tetrahedron Lett. 2012, 53, 1920.
[2] For selected examples, see: a) C. Peifer, R. Urich, V.
Schattel, M. Abadleh, M. Rottig, O. Kohlbacher, S.
Laufer, Bioorg. Med. Chem. Lett. 2008, 18, 1431; b) Z.
Zhao, W. H. Leister, R. G. Robinson, S. F. Barnett, D.
[12] X. Li, X. Li, N. Jiao, J. Am. Chem. Soc. 2015, 137, 9246.
[13] R. Zeng, G. Dong, J. Am. Chem. Soc. 2015, 137, 1408.
[14] For selected examples, see: a) J. R. Chen, X. Y. Yu, W. J.
Xiao, Synthesis 2015, 47, 604; b) H. Wang, L. N. Guo,
X. H. Duan, Chem. Commun. 2013, 49, 10370; c) Y. M.
Li, M. Sun, H. L. Wang, Q. P. Tian, S. D. Yang, Angew.
Chem. 2013, 125, 4064; Angew. Chem. Int. Ed. 2013, 52,
3972; d) T. Shen, Y. Z. Yuan, S. Song, N. Jiao, Chem.
Commun. 2014, 50, 4115; e) Y. M. Li, X. H. Wei, X. A.
Li, S. D. Yang, Chem. Commun. 2013, 49, 11701; f) G.
Jacquemot, M.-A. Mꢂnard, C. L’Homme, S. Canesi,
Chem. Sci. 2013, 4, 1287; g) J. Xie, P. Xu, H. Li, Q. Xue,
Adv. Synth. Catal. 2016, 358, 1–7
5
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim