Notes and references
1 (a) E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Comprehensive
Asymmetric Catalysis: Suppl. 2, Springer-Verlag, Berlin, 2004;
(b) P. J. Walsh and M. C. Kozlowski, Fundamentals of Asymmetric
Catalysis, University Science Books, California, 2009.
2 Reviews on addition of organometallic reagents to ketones and
aldehydes: (a) M. R. Luderer, W. F. Bailey, M. R. Luderer,
J. D. Fair, R. J. Dancer and M. B. Sommer, Tetrahedron: Asymmetry,
2009, 20, 981; (b) L. Pu and H.-B. Yu, Chem. Rev., 2001, 101, 757;
(c) C. M. Binder and B. Singaram, Org. Prep. Proced. Int., 2011,
43, 139; (d) M. Hatano and K. Ishihara, Synthesis, 2008, 1647.
3 Selected examples on addition of organozinc reagents to ketones:
(a) P. I. Dosa and G. Fu, J. Am. Chem. Soc., 1998, 120, 445;
(b) D. J. Ramo
(c) H. Li and P. J. Walsh, J. Am. Chem. Soc., 2004, 126, 6538;
(d) D. J. Ramon and M. Yus, Angew. Chem., Int. Ed., 2004,
43, 284; (e) S.-J. Jeon, H. Li, C. Garcıa, L. K. LaRochelle and
P. J. Walsh, J. Org. Chem., 2005, 70, 448–455; (f) E. F. DiMauro
and M. C. Kozlowski, J. Am. Chem. Soc., 2002, 124, 12668–12669;
(g) D. K. Friel, M. L. Snapper and A. H. Hoveyda, J. Am. Chem.
Soc., 2008, 130, 9942–9951; (h) M. Hatano, T. Miyamoto and
K. Ishihara, Org. Lett., 2007, 9, 4535.
4 (a) B. J. Wakefield, Organomagnesium Methods in Organic Chemistry,
Academic Press, San Diego, CA, 1995; (b) P. Knochel, Handbook of
Functionalized Organometallics, Wiley-VCH, Weinheim, Germany,
2005; (c) J. L. von dem Bussche-Huennefeld and D. Seebach,
Tetrahedron, 1992, 48, 5719.
5 (a) Y. Muramatsu and T. Harada, Angew. Chem., Int. Ed., 2008,
47, 1088; (b) Y. Muramatsu, S. Kanehira, M. Tanigawa,
Y. Miyawaki and T. Harada, Bull. Chem. Soc. Jpn., 2010, 83, 19;
´
n and M. Yus, Tetrahedron Lett., 1998, 39, 1239;
Scheme 1 Tentative mechanistic pathway for the 1,2-addition
of Grignard reagents to a,b-unsaturated ketones catalyzed by
CuBrꢀSMe2/L5.
´
´
when using only L5. Furthermore, our experimental results
show that the presence of an a-substituent and an adjacent
unsaturation in the substrate are important to obtain the desired
1,2-addition products with high regio- and enantioselectivity.
The use of aliphatic ketones led to the 1,2-addition products in
low yields and no enantiodiscrimination. The importance of
Cu, an adjacent unsaturation and the formation of 1–2% of
1,4-addition product shows a mechanistic similarity to the
well-studied Cu(I) catalyzed 1,4-addition of organometallics.11
Equipped with the experimental findings presented here, the
working hypothesis is that our system initially follows the
trends observed in 1,4-addition which consists of formation of
copper/ligand complex 11, its transmetallation by the Grignard
reagent (complex 12), reversible formation of a copper–olefin
p-complex followed by formal oxidative addition to the b-carbon
leading to a Cu(III) intermediate (s-complex) (Scheme 1).11
Most probably, the presence of an a-substituent prevents the
formation/accumulation of Cu(III) species, which in turn prevents
1,4-addition and favors 1,2-addition.
(c) E. Fernandez-Mateos, B. Macia, D. J. Ramon and M. Yus,
´ ´ ´
Eur. J. Org. Chem., ASAP; (d) C.-S. Da, J.-R. Wang, X.-G. Yin,
X.-Y. Fan, Y. Liu and S.-L. Yu, Org. Lett., 2009, 11, 5578.
6 (a) M. Hatano, O. Ito, S. Suzuki and K. Ishihara, J. Org. Chem.,
2010, 75, 5008; (b) M. Hatano, S. Suzuki and K. Ishihara, J. Am.
Chem. Soc., 2006, 128, 9998; (c) M. Hatano, O. Ito, S. Suzuki and
K. Ishihara, Chem. Commun., 2010, 46, 2674.
7 (a) A. Borner, in Trivalent Phosphorus Compounds in Asymmetric
¨
Catalysis: Synthesis and Applications, ed. W. Chen and H. U. Blaser,
Wiley-VCH, 2008, p. 359; (b) L.-X. Dai, T. Tu, S.-L. You, W.-P. Deng
and X.-L. Hou, Acc. Chem. Res., 2003, 36, 659; (c) We thank Dr B.
Pugin (Solvias) for a generous gift of a ligand kit for initial screening.
8 (a) M. Shibasaki and M. Kanai, Chem. Rev., 2008, 108, 2853;
(b) D. Tomita, M. Kanai and M. Shibasaki, Chem.–Asian J., 2006,
1, 161; (c) D. Tomita, R. Wada, M. Kanai and M. Shibasaki,
J. Am. Chem. Soc., 2005, 127, 4138.
9 R. Moser, Z. V. Boskovic, C. S. Crowe and B. H. Lipshutz, J. Am.
Chem. Soc., 2010, 132, 7852.
10 (a) H. Gilman and J. M. Straley, Recl. Trav. Chim. Pays-Bas, 2010,
55, 821; (b) N. Krause, Modern organocopper chemistry, Wiley-VCH,
Weinheim, 2002; (c) S. R. Harutyunyan, T. den Hartog, K. Geurts,
A. J. Minnaard and B. L. Feringa, Chem. Rev., 2008, 108, 2824;
In summary, for the first time we have been able to
demonstrate that it is possible to achieve Cu(I) catalyzed
asymmetric 1,2-additions to a-substituted enones using
inexpensive, highly reactive Grignard reagents and the use of
stoichiometric amounts of additives is not required. The
discovery of this novel catalytic system gives access to chiral
branched tertiary alcohols with excellent yields and an er up
to 98 : 2.
(d) A. Alexakis, J. E. Backvall, N. Krause, O. Pamies and
¨
M. Die
B. L. Feringa, Chem. Commun., 2011, 47, 2679.
11 (a) S. R. Harutyunyan, F. Lopez, W. R. Browne, A. Correa,
´
guez, Chem. Rev., 2008, 108, 2796; (e) J. F. Teichert and
Application of this concept to simple aromatic ketones as
well as mechanistic studies to address the current limitations of
the methodology which are lower enantioselectivities with
aliphatic substrates and non-branched Grignard reagents are
ongoing and will be reported in due course.
´
D. Pena, R. Badorrey, A. Meetsma, A. J. Minnaard and
B. L. Feringa, J. Am. Chem. Soc., 2006, 128, 9103; (b) S. Mori
and E. Nakamura, in Modern Organocopper Chemistry,
ed. N. Krause, Wiley-VCH, Weinheim, 2002, p. 315.
c
1480 Chem. Commun., 2012, 48, 1478–1480
This journal is The Royal Society of Chemistry 2012