U. Ackermann et al.
[6] M. Piert, H.-J. Machulla, M. Picchio, G. Reischl, S. Ziegler, P. Kumar,
H.-J. Wester, R. Beck, A. J. B. McEwan, L. I. Wiebe, M. Schwaiger, J.
Nucl. Med. 2005, 46, 106–113.
[7] L. Dubois, W. Landuyt, L. Cloetens, A. Bol, G. Bormans, K. Haustermans,
D. Labar, J. Nuyts, V. Grégoire, L. Mortelmans, Eur. J. Nucl. Med. Mol.
Imaging 2009, 36, 209–218.
[8] J. van Loon, M. H. M. Janssen, M. Öllers, H. J. W. L. Aerts, L. Dubois,
M. Hochstenbag, A.-M. C. Dingemans, R. Lalisang, B. Brans, B. Windhorst,
G. A. van Dongen, H. Kolb, J. Zhang, D. De Ruysscher, P. Lambin, Eur. J.
Nucl. Med. Mol. Imaging 2010, 37, 1663–1668.
[9] C. J. Koch, J. S. Scheuermann, C. Divgi, K. D. Judy, A. V. Kachur,
R. Freifelder, J. S. Reddin, J. Karp, J. B. Stubbs, S. M. Hahn, J. Driesbaugh,
D. Smith, S. Prendergast, S. M. Evans, Eur. J. Nucl. Med. Mol. Imaging
2010, 37, 2048–2059.
Polarographic pO2 measurements
After imaging, animals were humanely euthanized, and the
oxygen partial pressure in the tumour was measured using a
polarographic oxygen electrode.26 Tumour pO2 was measured
with a two-channel time-resolved luminescence-based optical
oxygen-sensing probe (Oxylite 2000, Oxford Optronix, Oxford, UK)
or Oxylite probe. The probes (230 mm o.d.) were precalibrated by
the manufacturer (ꢀ0.7 mmHg or <ꢀ10% of actual pO2, whichever
was greater). To further ensure correct pO2 readings in the
experiments, the probe was checked in normal saline and again
in animals just killed to ensure a 0 mm Hg recording.
[10] C. L. Falzon, U. Ackermann, N. Spratt, H. J. Tochon-Danguy, J. White,
D. Howells, A. M. Scott, J Labelled Cpd Radiopharm 2006, 49,
1089–1103.
Conclusion
2-(1,4-Naphthoquinonyl)methyl 4-[18F]fluorobenzoate ([18F]1) has
been synthesised as a putative hypoxia tracer from 2-hydroxymethyl
1,4-naphthoquinone (7) and 4-[18F]fluorobenzoic acid ([18F]8)
[11] I. Antonini, T.-S. Lin, L. A. Cosby, Y.-R. Dai, A. C. Sartorelli, J. Med.
Chem. 1982, 25, 730–735.
[12] C. Flader, J. Liu, R. F. Borch, J. Med. Chem. 2000, 43, 3157–3167.
[13] K. Karichiappan, D. Wege, Aust. J. Chem. 2000, 53, 743–747.
using DCC to activate [18F]8. The synthesis has been automated [14] H. Uno, J. Org. Chem. 1986, 51, 350–358.
using a modified FDG synthesiser. [18F]1 has been produced in a
radiochemical yield of 27 ꢀ 5%, with a radiochemical purity of
97.5% and a specific activity of 78.4–134.5GBq/mmol at the end
of synthesis.
[15] K. Kobayashi, M. Ushida, T. Uneda, K. Yoneda, M. Tanmatsu,
O. Morikawa, H. Konishi, J. Chem. Soc. Perkin. Trans. 1. 2001,
2977–2982.
[16] G. Tang, W. Zeng, M. Yu, G. Kabalka, J. Labelled Compd. Radiopharm.
2008, 51, 68–71.
[17] S. D. Yeoh, U. Ackermann, H. J. Tochon-Danguy, J. Sachinidis,
R. Mulligan, S. Poniger, J. Label. Compd Radiopharm. 2009, 52, Sup-
plement 1 S289
[18] P. Kumar, D. Stypinski, H. Xia, A. J. B. McEwan, H.-J. Machulla,
L. I. Wiebe, J. Labelled. Compds. Radiopharm. 1999, 42, 3–16.
The results of our in vivo evaluation indicate that imaging of
tumour hypoxia with radiolabelled quinones is feasible. How-
ever, improvements to the overall structure of [18F]1 are required
to make this molecule more stable towards liver metabolism and
achieve irreversible trapping in hypoxic cells. The formation of [19] R. Bejot, V. Kersemans, C. Kelly, L. Carroll, R. C. King, V. Gouverneur,
[18F]1 from the intermediate acid [18F]8 using DCC was fast
Nucl. Med. Biol. 2010, 37, 565–575.
[20] S. Yoshihara, M. Makishima, N. Suzuki, S. Ohta, Toxicol. Sci., 2001, 62,
and quantitative. We therefore believe that the use of DCC as a
coupling reagent in PET deserves further investigation.
221–227.
[21] C. J. Patten, Drug Discov. Today: Technol. 2006, 73–78.
[22] N. Plant, Drug Discov. Today. 2004, 9, 328–336.
[23] D. C. Ackley, K. T. Rockich, T. R. Baker, Methods in Pharmacology and
Acknowledgements
Toxicology: Optimization in Drug Discovery: In Vitro Methods, 1st
Edition 2004, 151–162, ISBN: 978-1-61737-499-9, Springer, Humana
This work was supported by a grant from the National Health
Press.
and Medical Research Council project (grant no. 469002) and a
[24] T. L. Ross, M. Honer, P. Y. H. Lam, T. L. Mindt, V. Groehn, R. Schibli,
grant from the Perpetual Trustees H&L Hecht Trust.
P. A. Schubiger, S. M. Ametamey, Bioconjugate Chem. 2008, 19,
2462–2470.
[25] N. Lawrentschuk, A. M. Poon, S. S. Foo, L. G. Putra, C. Murone,
I. D. Davis, D. M. Bolton, A. M. Scott, BJU Int. 2005, 96, 540–6.
[26] N. Lawrentschuk, F. T. Lee, G. Jones, A. Rigopoulos, A. Mountain,
G. O’Keefe, A. T. Papenfuss, D. M. Bolton, I. D. Davis, A. M. Scott,
Urol. Oncol. 2009, Jun 12. doi:10.1016/j.urolonc.2009.03.028
[Epub ahead of print]
[27] J. Koyama, I. Morita, N. Kobayashi, T. Osakai, H. Hotta, J. Takayasu,
H. Nishino, H. Tokuda, Cancer Lett. 2003, 201, 25–30.
[28] T. Grönroos, L. Bentzen, P. Marjamäki, R. Murata, M. R. Horsman,
S. Keiding, O. Eskola, M. Haaparanta, H. Minn, O. Solin, Eur. J.
Nucl. Med. Mol. Imaging. 2004, 31, 513–520.
References
[1] J. Overgaard, J. R. Horsmann, Sem Radiat Oncol. 1969, 6, 10–21.
[2] J. G. Rajendran, K. R. G. Hendrickson, A. M. Spence, M. Muzi, K. A. Krohn,
D. A. Mankoff, Eur. J. Nucl. Med. Mol. Imaging. 2006, 33, S44-S53.
[3] D. M. Brizel, R. K. Dodge, R. W. Clough, M. W. Dewhirst, Radiother.
Oncol. 1999, 53, 113–117
[4] B. Gagel, P. Reinartz, E. DiMartino, M. Zimny, M. Pinkawa, P. Maneschi,
S. Stanzel, K. Hamacher, H. H. Coenen, M. Westhofen, U. Buell, M. J.
Eble, Q. J. Nucl. Med. 2001, 45, 138–188.
[5] H. J. Tochon-Danguy, J. I. Sachinidis, F. Chan, J.G. Chan, C. Hall,
L. Cher, S. Stylli, J. Hill, A. Kaye, A. M. Scott, Nucl. Med. Biol. 2002,
29, 191–197.
[29] J. Browne, A. B. de Pierro, IEEE Trans. Med. Imaging, 1996, 15,
687–699.
Copyright © 2011 John Wiley & Sons, Ltd.
J. Label Compd. Radiopharm 2011, 54 788–794