AMINOPHOSPHINES
703
TABLE 2
REFERENCES
1. Burrows, A.D.; Mahon, M.F.; Palmer, M.T. J. Chem. Soc., Dalton Trans.
2000, 3615–3619.
2. Priya, S.; Balakrishna M.S.; Mague, J.T. J. Organomet. Chem. 2003, 679,
116–124.
Comparison of υCO of [M(CO)4L2]
Complexes
υCO cm−1
cis-[Mo(CO)4(PPh2N(CH2C6H5)2)2]
2011, 1910, 1871,
1818
2009, 1865, 1813
2002, 1871, 1813
3. Necas, M.; St J. Foreman, M.R.; Dastych, D.; Novosad. J. Inorg. Chem.
Commun. 2001, 4, 36–40.
4. Liu, H.; Banderia, N.A. G.; Calhorda, M.J.; Drew, M.G. B.; Felix, V.;
Novosad, J.; Fabrizi de Biani, F.; Zanello, P. J. Organomet. Chem. 2004,
689, 2808–2819.
cis-[Mo(CO)4(PhP{N(CH2C6H5)2}2)2]
cis-[Cr(CO)4(PhP{N(CH2C6H5)2}2)2]
5. Gaw, K.G.; Smith, M.B.; Steed, J.D. J. Organomet. Chem. 2002, 664,
294–297.
6. Bhattacharyya, P.; Ly, T.Q.; Slawin, A.M. Z.; Woollins, J.D. Polyhedron
2001, 20, 1803–1808.
plex [CuCl2(Ph2PN(CH2C6H5)2)2] (15) is obtained. The
reaction of PhP{N(CH2C6H5)2}2 with Cu(OAc)2.H2O gave
[Cu(CH3COO)2(PhP{N(CH2C6H5)2}2)2] (16). The products
(15, 16) were characterized by IR, NMR and elemental analy-
7. Guo, R., Li, X.; Wu, J.; Kwok, W.H.; Chen, J.; Choi, M.C. K.; Chan, A.S.
C. Tetrahedron Lett. 2002, 43, 6803–6806.
¨
¨
8. Gu¨mgu¨m, B.; Akba, O.; Durap, F.; Yıldırım, L.T.; Ulku¨, D.; Ozkar, S.
Polyhedron. 2006, 25, 3133–3137.
9. Durap, F.; Biricik, N.; Gu¨mgu¨m, B.; Ozkar, S.; Ang, W.H.; Fei, Z.; Scopel-
1
sis. The 31P–{ H} NMR chemical shifts of 15 and 16 are also
¨
within the expected range, 80.8, for structurally similar com-
plexes.[23] The phosphorus resonances of complexes 15 and 16
show a coordination shift to higher frequencies by ca. 14.3 and
56.5 ppm, respectively, compared to those of the free ligands.
The phosphorus chemical shifts for the complexes indicate P–Cu
interaction. In the IR spectra (KBr) of the complexes, the υ(PN)
vibration in 15 and 16 is tentatively assigned to strong absorp-
tions at 894 cm−1 (15) and 850 cm−1 (16), which is shifted to
higher wavenumbers for 15 (ꢀυ = 33 cm−1). The υ(PN) vibra-
tion in 16 show no shift with respect to that of free ligand. The
υ(PPh) bands are observed in 1437 cm−1 for 15 and 1443 cm−1
for 16, respectively.
liti, R. Polyhedron. 2008, 27, 1, 196–202.
10. Slawin, A.M. Z.; Wheatley, J.; Wheatley, M.V.; Woollins, J.D. Polyhedron
2003, 22, 1397–1405.
11. Saluzzo, C.; Breuzard, J.; Pellet-Rostaing, S.; Vallet, M.; Le
Guyader, F.; Lemaire, M. J. Organomet. Chem. 2002, 98, 643–
644.
12. Cheng, J.; Wang, F.; Xu, J.; Pan, Y.; Zhang, Z. Tetrahedron Lett. 2003, 44,
7095–7098.
13. Stiddard, M.H. B. J.Chem. Soc. 1962, 4712–4715.
14. Hill, T.G.; Haltiwanger, R.C.; Prout, T.R.; Norman, A.D. Inorg. Chem.
1989, 28, 3461–3467.
15. Sarıo¨z, O.; Serindag˘, O.; Abdullah, M.I. Phosphorus, Sulfur, Silicon Relat.
Elem. 2009, 184, 1785–1795.
16. Ku¨hl, O.; Blaurock, S.; Sieler, J.; Hey-Hawkins, E. Polyhedron 2001, 20,
111–117.
The reactions of Ph2PNHCH2SO3H with NiCl2.6H2O
and CoCl2.2H2O gave [Ni(PPh2NHCH2SO3H)2Cl2] (17) and
[Co(PPh2NHCH2SO3H)2Cl2] (18), respectively. The products
(17, 18) were characterized by IR, NMR, and elemental anal-
ysis. The complexes 17 and 18 exhibit singlets that show
the expected low-fıeld shifts relative to the uncoordinated lig-
ands [17: 47.2 ppm (ꢀδ = 16.9 ppm), 18: 45.8 ppm (ꢀδ =
15.5 ppm)].[32] The phosphorus chemical shifts for the com-
plexes indicate P–M interaction. In the IR spectra of the com-
plexes, the υ(PN) vibration in 17 and 18 is tentatively assigned
to strong absorptions at 943 cm−1 (17) and 945 cm−1 (18), which
is shifted to higher wavenumbers for 17 (ꢀυ = 17 cm1) and 18
(ꢀυ = 15 cm1) compared with their free ligands. The υ(PPh)
bands are observed in 1436 cm−1 for 17 and 1438 cm−1 for 18,
respectively.
17. Gaw, K.G., Smith, M.B.; Slawin, A.M. Z. New J. Chem. 2000, 24, 429–435.
18. Lindner, E.; Mohr, M.; Nachtigal, C.; Fawzi, R.; Henkel, G. J. Organomet.
Chem. 2000, 595, 166–177.
19. Fei, Z.; Scopelliti, R.; Dyson, P.J. J. Chem. Soc. Dalton Trans. 2003,
2772–2779.
20. Hessler, A.; Stelzer, O. J. Org. Chem. 1997, 62, 2362–2369.
¨
˙
21. Biricik, N.; Durap, F.; Kayan, C.; Gu¨mgu¨m, B.; Gu¨rbu¨z, N.; Ozdemir, I.;
Ang, W.H.; Fei, Z.; Scopelliti, R. Journal of Organometallic Chemistry,
2008, 693, 2693–2699.
22. Biricik, N.; Durap, F.; Kayan, C.; Gu¨mgu¨m, B. Heteroatom Chemistry 2007,
18, 6, 613–616.
¨
¨
23. Aydemir, M.; Durap, F.; Baysal, A.; Akba, O.; Gu¨mgu¨m, B.; Ozkar, O.;
Yıldırım, L. Polyhedron 2009, 28, 2313–2320.
24. Rudd, M.D.; Creighton, M.A.; Kautz, J.A. Polyhedron 2004, 23,
1923–1929.
25. Kingsley, S.; Vij, A.; Chandrasekhar, V. Inorganic Chemistry 2001, 40,
6057–6060.
26. Balakrishna, M.S.; Mague, J.T. Polyhedron 2001, 20, 2421–2424.
27. Balakrishna, M.S.; Abhyankar, R.M.; Mague, J.T. J. Chem. Soc. Dalton
Trans. 1999, 1407–1412.
28. Zubiri, M.R.; Slawin, A.M. Z.; Wainwright, M.; Woollins, J.D. Polyhedron
2002, 21, 1729–1736.
29. Balakrishna, M.S.; McDonald, R. Inorg. Chem. Commun. 2002, 5, 782–786.
30. Thurner, C.L.; Barz, M.; Spiegler, M.; Thiel, W.R. J. Organomet. Chem.
1997, 541, 39–49.
31. Zubiri, M.R.; Clarke, M.L.; Foster, D.F.; Cole-Hamilton, D.J.; Slawin,
A.M. Z.; Woollins, J.D. J. Chem.Soc., Dalton Trans. 2001, 969–
971.
CONCLUSIONS
In conclusion, the new monoaminophosphines and
bis(amino)phosphine and their oxides, sulfıdes, selenides, and
transition metal complexes have been prepared. The compounds
were characterized. Although aminophosphines possess two
potential donor atoms, their coordination compounds involve
the metal–phosphorus bond. The coordination through phos-
phorus is attributed to the low basicity of the amine nitrogen
because of the P–N π interaction between the phosphorus dπ
and nitrogen pπ orbitals.
32. Said, M.; Hughes, D.L.; Bochmann, M. Polyhedron 2006, 25, 843–
852.