1262
M. A. Masood et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1255–1262
The vial was irradiated in the microwave reactor at 130 °C for 3600–7200 s (1–
Biological testing of the metabolite 32 showed it to be less po-
tent than the starting compound 31.
2 h). Typical yields on drug molecules were ca. 5–20%, it had not been shown
conclusively whether adding more palladium catalyst and reheating improves
the yield.
The solvent was evaporated under reduced pressure in the Genevac to give the
crude reaction mixture, this was taken up in dichloromethane (40 ml) and
washed with brine (saturated, 30 ml), water (30 ml), dried over magnesium
sulphate, filtered and the solvent evaporated to give the crude material. This
was then purified using preparative HPLC.
Transformations on drug molecules and the impact on some
Pfizer medicinal chemistry projects have been elaborated. With
the MCH lead compound, a simple but synthetically-difficult
N-demethylation gave a more potent and more polar compound.
Biomimetic oxidation has been reported as a method for metabo-
lite synthesis, for example the oxytocin lead compound 31 was
converted into the key metabolite 32 using this approach. LD is a
viable and often practical approach for opening up chemical space
and synthesizing key compounds. While the oxidation and BMO
screens may not be successful on most substrates, other screens
such as the halogenation screens can often work. As research into
C–H activation increases and more transformations are discovered,
LD will potentially have a more mainstream use in drug discovery.
Additional chemical transformations on drug molecules via C–H
activation and oxidation have been described and their impact on
drug discovery projects highlighted. The fluoropyrazole P38 com-
pound 14 is another example of selective remote functionalization
of a highly functionalized molecule. The conditions for fluorination
6. Litvinas, N. D.; Brodsky, B. H.; DuBois, J. Angew. Chem., Int. Ed. Engl. 2009, 48,
4513.
7. Doro, F. G.; Lindsay-Smith, J. R.; Ferreira, A. G.; Assis, M. D. J. Mol. Catal. A: Chem.
2000, 164, 97.
8. Cunningham, I. D.; Danks, T. N.; Hay, J. N.; Hamerton, I.; Gunathilagan, S.;
Januczak, C. J. Mol. Catal., A: Chem. 2002, 185, 25.
9. Gonzalves, D’A. A. M. R. J. Heterocycl. Chem. 2002, 34, 499.
10. Ley, S. V.; Baxendale, I. R. Chimia 2008, 62, 162.
11. Park, B. K.; Kitteringham, N. R.; O’Neill, P. M. Annu. Rev. Pharmacol. Toxicol.
2001, 41, 443; Fisher, M. B.; Henne, K. R.; Boer, J. Curr. Opin. Drug Discov. Devel.
2006, 9, 101.
12. Bondi, A. J. Chem. Phys. 1964, 68, 441.
13. Ismail, M. D. J. Fluorine Chem. 2002, 118, 27.
14. Ramsden, C. A.; Smith, R. G. J. Am. Chem. Soc. 1998, 120, 6842.
15. Organofluorine Chemistry. Principles and Commercial Applications; Banks, R. E.,
Smart, B. E., Tatlow, J. C., Eds.; Plenum Press: New York, London, 1996;
Advances in Organic Synthesis Modern Organofluorine Chemistry—Synthetic
Aspects; Laali, K. K., Rahman, A.-U., Eds.; Bentham Science: Amsterdam, 2006;
Vol. 2, Merrit, R. F.; Johnson, F. A. J. Org. Chem. 1966, 31, 1859; Purrington, S. T.;
Kagen, B. S.; Patrick, T. B. Chem. Rev. 1986, 86, 997; Rozen, S. Acc. Chem. Rev.
1988, 21, 307; Chambers, R. D.; Parsons, M.; Sandford, G.; Thomas, E.; Trimcic,
J.; Moilliet, J. S. Tetrahedron 2006, 62, 7162; Chambers, R. D.; Skinner, C. J.;
Thomson, J.; Hutchinson, J. C. S. Chem. Commun. 1995, 17; Chambers, R. D.;
Holling, D.; Sanford, G.; Batsanov, A. S.; Howard, J. A. K. J. Fluorine Chem. 2004,
125, 661.
were found using
efficiently provided optimal methodology.
LD has demonstrated the difficulty in predicting selectivities
and served to highlight purification as a significant hurdle, as the
molecular weight of the drug increases.
a combinatorial plate based screen that
16. Banks, R. E. J. Chem. Soc., Chem. Commun. 1992, 595; Singh, R. P.; Shreeve, J. M.
Acc. Chem. Res. 2004, 37, 31.
Acknowledgments
17. Montgomery, J. A., Jr.; Petersson, G. A.; Al-Laham, M. A.; Mantzaris, J. Chem.
Phys. Lett. 1990, 169, 497.
The authors are greatly indebted to Professor S. V. Ley (Cam-
bridge), Professor J. T. Groves (Princeton), Professor M. P. Doyle
(Maryland), Professor G. Sandford (Durham), Professor E.J. Corey
(Harvard), Professor John Brown (Oxford), Dr Dafydd Owen (PGRD),
Mrs. Rachel Osborne, Dr. David Pryde (PGRD), Dr. Nawaz Khan and
Dr Simon Mantell for very helpful discussions.
18. Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737; Gerstenberger, M. R.
C.; Haas, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 647; Welch, J. T. Tetrahedron
1987, 43, 3123; Borodkin, G. I.; Zaikina, P. A.; Shubin, V. G. Tetrahedron Lett.
2006, 47, 2639; Zhang, Y.; Shibatomi, K.; Yamamoto, H. Synlett 2005, 2837.
19. Dichloroethane was used as an alternative to dichloromethane as it is less
volatile and can be used with liquid handlers.
20. Chambers, R. D.; Spink, R. C. H. Chem. Commun. 1999, 883; Chambers, R. D.; Fox,
M. A.; Sanford, G. Lab Chip 2005, 5, 1132.
21. The plate was sealed up and agitated at room temperature for between 48 and
72 h as this was found to be the optimum reaction time. The reactions were
quenched by the addition of aqueous methanol (1:1) and then analyzed by
LCMS.
22. Marat, R. K.; Janzen, A. F. Can. J. Chem. 1977, 55, 3031.
23. Matsuzaki, T.; Hanai, S.; Kishi, H.; Liu, Z.-H.; Bao, Y.-L.; Kikuchi, A.; Tsuchida, K.;
Sugino, H. J. Biol. Chem. 2002, 277, 19008.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
24. Miller, D. C.; Klute, W.; Calabrese, A.; Brown, A. D. Bioorg. Med. Chem. Lett. 2009,
19, 6144.
25. Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
26. CRF-1 potency is expressed as functional activity measured using CHO cells
(Cell Sciences SNB0000377) expressing recombinant human CRF-1 receptor
grown in DMEM:F12 (1:1) media containing 10% (V/V) Foetal Bovine Serum
(PAA), 400 lg/ml Geneticin (GIBCO-BRL 10131-027) and 1% (V/V) Glutamax in a
cell incubator at 37 °C, 5% CO2 to 70% confluence. FAC hCRF (10 nM) was added
with test compound to 10,000 cells/well in Phosphate Buffered Saline
containing 500 lM FAC IBMX. The functional response was measured using
DiscoveRx HitHunter cAMP II Assay kit (Amersham Biosciences—90-0034-03).
Each compound was tested multiple times using a 0.5 log serial dilution dose–
response with a top final assay concentration of 20 lM. The % response of the
test compound at different test doses were then fitted to a 4-parameter logistic
curve to determine the compound IC50. Ki values were determined from the
IC50 using the Cheng and Prussoff relationship and the EC50 for the agonist
dose–response curve which was determined on the same day.
27. Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584; Kalyani, D.; Dick, A. R.;
Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523.
1. Chorghade, M. S.; Hill, D. R.; Lee, E. C.; Pariza, R. J.; Dolphin, D. H.; Hino, F.;
Zhang, L.-Y. Pure Appl. Chem. 1996, 68, 753; Bernadou, J.; Bonnafous, M.; Labat,
G.; Loiseau, P.; Meunier, B. Drug Met. Dispos. 1991, 19, 360; Segrestaa, J.; Verite,
P.; Estour, F.; Menager, S.; Lafont, O. Chem. Pharm. Bull 2002, 50, 744; Mohajer,
D.; Karimipour, G.; Bagherzadeh, M. New J. Chem. 2004, 28, 740.
2. Wender, P. A.; Hilinski, M. K.; Mayweg, A. V. W. Org. Lett. 2005, 7, 79.
3. Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A 1996, 108, 35; Sanford, M. S.;
Deprez, N. R. Inorg. Chem. 2007, 46, 1924; Eberson, L.; Gomez-Gonzales, L. J.
Chem. Soc. Chem. Commun. 1971, 263; Zhang, R.; Nagraj, N.; Lansakara, D. S. P.;
Lowell, P. H.; Newcombe, M. Org. Lett. 2006, 8, 2731.
4. Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285;
Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127,
7330.
5. Palladium acetate catalyzed O-acetoxylation:
Substrate (2.86 mmol) is suspended/dissolved in glacial acetic acid (2–3 ml) in
a microwave vial. PhI(OAc)2 (3.0 equiv) was added portion-wise followed by
Palladium acetate (10–20 mg, excess). The vial is sealed by crimping on the lid.