new, biofunctional supramolecular assemblies that contribute
to the development of novel biomaterials, which certainly
deserve further exploration. In addition, this approach should
be applicable for other nucleosides, such as GMP, cAMP,
ADP or ATP, that are substrates of an array of enzymes and
carry important functions.
We are grateful for financial support from the NIH, and an
HFSP grant (RGP0056/2008). We thank the EM facility at
Brandeis University for assistance.
Notes and references
1 L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104,
1201–1217; N. M. Sangeetha and U. Maitra, Chem. Soc. Rev.,
2005, 34, 821–836.
2 B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and
P. Walter, Molecular Biology of the Cell, Garland Science,
New York, 2002.
3 R. Iwaura, K. Yoshida, M. Masuda, K. Yase and T. Shimizu,
Chem. Mater., 2002, 14, 3047–3053.
4 L. Moreau, P. Barthelemy, M. El Maataoui and M. W. Grinstaff,
J. Am. Chem. Soc., 2004, 126, 7533–7539.
5 K. Araki, andI. Yoshikawa, Low Molecular Mass Gelators: Design,
Self-Assembly, Function, 2005, vol. 256, pp. 133–165; A. V. Kabanov
and S. V. Vinogradov, Angew. Chem., Int. Ed., 2009, 48, 5418–5429.
6 Y. J. Wang, B. Desbat, S. Manet, C. Aime, T. Labrot and R. Oda,
J. Colloid Interface Sci., 2005, 283, 555–564.
7 S. V. Vinogradov, E. Kohli and A. D. Zeman, Pharm. Res., 2006,
23, 920–930; N. Bogliotti, A. Ritter, S. Hebbe and A. Vasella, Helv.
Chim. Acta, 2008, 91, 2181–2202; G. Godeau and P. Barthelemy,
Langmuir, 2009, 25, 8447–8450; G. Godeau, C. Brun, H. Arnion,
C. Staedel and P. Barthelemy, Tetrahedron Lett., 2010, 51,
1012–1015; V. Caplar, L. Frkanec, N. S. Vujicic and M. Zinic,
Chem.–Eur. J., 2010, 16, 3066–3082; L. Frkanec and M. Zinic,
Chem. Commun., 2010, 46, 522–537.
8 S. M. Park, Y. Shen and B. H. Kim, Org. Biomol. Chem., 2007, 5,
610–612.
9 L. E. Buerkle, Z. Li, A. M. Jamieson and S. J. Rowan, Langmuir,
2009, 25, 8833–8840.
Fig. 3 Strain and frequency dependence of the dynamic storage
moduli (G0) and the loss moduli (G0 0) of the solution of 4 (3.5 wt%),
the gel formed by the addition of ALP into the solution of 4, and the
gel formed by the mix of poly(T)10 and 3.
deformation and flow of materials, especially in gel states. As
shown in Fig. 3, during strain sweep, the value of the dynamic
storage modulus (G0) of the solution of 4 at the concentration
of 3.5 wt% almost equals to its loss modulus (G00), about 1 Pa,
which indicates a liquid-like state. After the treatment with
ALP, the mixture exhibits much higher G0 than G0 0, and the
value of G0 increases from 1 to 100 Pa, indicating that the
sample behaves as a viscoelastic material. The addition of
poly(T)10 to the hydrogel of 3 results in an increase in G0 up to
at least 3 times higher than that of 4 treated with ALP. This
result clearly indicates that the oligonucleic acid likely
enhances the cross-linking of the nanofibers of 3. Moreover,
the value of G0 of the hydrogel, in frequency sweep, exhibits
little dependence on the frequency, suggesting that the matrix
of the hydrogel has good tolerance to external shear force.
All of these results indicate that the hydrogel of 3 and
poly(T)10 consists of a more complex network structure, which
provides effective cross-linking and increases the elasticity of
the hydrogel. This result also agrees with the morphology as
revealed by TEM (Fig. 2D).
10 G. Godeau, J. Bernard, C. Staedel and P. Barthelemy, Chem.
Commun., 2009, 5127–5129.
11 Z. M. Yang, H. W. Gu, D. G. Fu, P. Gao, J. K. Lam and B. Xu,
Adv. Mater., 2004, 16, 1440–1444; Z. M. Yang, G. L. Liang,
L. Wang and B. Xu, J. Am. Chem. Soc., 2006, 128, 3038–3043;
Z. Yang, G. Liang and B. Xu, Acc. Chem. Res., 2008, 41, 315–326;
W. J. Wang, H. M. Wang, C. H. Ren, J. Y. Wang, M. Tan, J. Shen,
Z. M. Yang, P. G. Wang and L. Wang, Carbohydr. Res., 2011, 346,
1013–1017; G. John, B. V. Shankar, S. R. Jadhav and
P. K. Vemula, Langmuir, 2010, 26, 17843–17851; Z. M. Yang,
K. M. Xu, Z. F. Guo, Z. H. Guo and B. Xu, Adv. Mater., 2007, 19,
3152–3156; Z. Yang, G. Liang, Z. Guo and B. Xu, Angew. Chem.,
Int. Ed., 2007, 46, 8216–8219; S. Toledano, R. J. Williams,
V. Jayawarna and R. V. Ulijn, J. Am. Chem. Soc., 2006, 128,
1070–1071; R. J. Williams, A. M. Smith, R. Collins, N. Hodson,
A. K. Das and R. V. Ulijn, Nat. Nanotechnol., 2009, 4, 19–24;
G. L. Liang, Z. M. Yang, R. J. Zhang, L. H. Li, Y. J. Fan,
Y. Kuang, Y. Gao, T. Wang, W. W. Lu and B. Xu, Langmuir,
2009, 25, 8419–8422; X. Li, Y. Kuang, H.-C. Lin, Y. Gao, J. Shi
and B. Xu, Angew. Chem., Int. Ed., 2011, 50, 9365–9369.
12 W. N. Lipscomb and N. Strater, Chem. Rev., 1996, 96, 2375–2434.
13 J. A. Beavo and L. L. Brunton, Nat. Rev. Mol. Cell Biol., 2002, 3,
710–718.
In conclusion, we have successfully demonstrated that, with
proper molecular design, the integration of enzymatic reaction
and self-assembly provides a feasible approach to create the
molecular hydrogels of adenosine. Of all the nucleosides and
nucleotides, the recognition of adenosine 50-monophosphate
(AMP) is vital17 since nucleotide phosphates such as AMP are
important because of their role in bioenergetics, metabolism,
and transfer of genetic information. This work, thus, provides
14 Y. Gao, Y. Kuang, Z. F. Guo, Z. H. Guo, I. J. Krauss and B. Xu,
J. Am. Chem. Soc., 2009, 131, 13576–13577.
15 R. B. Merrifield, J. Am. Chem. Soc., 1963, 85, 2149–2154.
16 L. L. Frado and R. Craig, J. Mol. Biol., 1992, 223, 391–397.
17 L. M. Tumir, I. Piantanida, P. Novak and M. Zinic, J. Phys. Org.
Chem., 2002, 15, 599–607.
c
2100 Chem. Commun., 2012, 48, 2098–2100
This journal is The Royal Society of Chemistry 2012