184
O. Páv et al. / Bioorg. Med. Chem. Lett. 22 (2012) 181–185
2500
2000
1500
1000
500
phosphonate tetramer at a 1:1 ratio. None of the prepared oligoa-
6
denylates exhibited antagonist activity under these conditions.
In conclusion, we prepared two sets of oligoadenylates modified
by regioisomeric 20- and 50-phosphonate units. We found that tet-
ramers pAAApcX modified by ribo (17d), arabino (17e), and xylo
(17f) 50-phosphonate units activated RNase L with efficiency com-
parable to that of natural activator. Moreover, the modification at
this position provided tetramers possesing stability of the 2’-O-P-
CH2-O-5’ internucleotide linkage against cleavage by exonucleases
forming the 5’-nucleotides. Our earlier study on the modified oli-
gonucleotides containing the regioisomeric 3’-O-P-CH2-O-5’ link-
age showed their complete stability against nucleases of L1210
cell free extract and phosphodiesterase I.15,17,18 The substitution
of 50-terminal phosphate for 50-terminal phosphonate in tetramer
pcXAAA 14d afforded tetramer with excellent activation efficiency
and with complete stability against cleavage by phosphomonoes-
terases but not against exonucleases, however, there is no problem
to modify the 2’(3’)-end of pcXAAA 14d to prevent the exonuclease
cleavage. The improved stability observed with compounds 14d
and 17d–f is anticipated to facilitate in vivo evaluation of these
oligoadenylates.
14d
15d
16d
17d
0
0
100
200
Time (s)
300
400
Figure 3. Cleavage of FRET substrate in the presence of natural activator 6 and
tetramers modified by ribo 50-phosphonate unit Xd (14d, 15d, 16d, 17d).
Acknowledgements
nate linkages at this position ensure the stability against cleavage
by exonucleases.14,15 Interestingly, the position of the methylene
group in the phosphonate 2’,5’ internucleotide linkages of regioiso-
meric pairs of ribo tetramers (7a and 15d, 8a and 16d, and 9a and
17d) substantially influences their EC50 values as obvious from the
Table 2.
The support by the grant 202/09/0193 (Czech Science Founda-
tion) and Research centers KAN200520801 (Acad. Sci. CR) and
LC060061 (Ministry of Education, CR) under the Institute research
project Z40550506 is gratefully acknowledged.
Tetramers pAXpcAA 8 and pApcXAA 15 bearing ribo, arabino,
and xylo modifications at the second position exhibited a consider-
ably reduced activation ability. The second unit is essential for the
binding of a tetramer to RNase L2,16 and it seems that any modifi-
cation of the internucleotide linkage at this position has a detri-
mental effect. This finding is in agreement with the data we
obtained in our study dealing with murine RNase L.14
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Interestingly, the tetramers pcXAAA 14 bearing 50-terminal
phosphonate instead of 50-terminal phosphate retained the activa-
tion ability. Especially the ribo tetramer 14d was a very potent acti-
vator of human RNase L with EC50 value of 53 nM. The 50-terminal
phosphate is a key structural feature of 2-5As and its cleavage by
phosphomonoesterases leads to an immediate loss of the activa-
tion ability of the tetramer. Thus, the presence of 50-terminal
phosphonate affords an activator with complete stability against
5’-dephosphorylation by phosphomonoesterases.17 However, this
tetramer 14 is not resistant against exonucleases because of the
presence of natural units at second, third, and fourth positions.
The incorporation of the ribo 5’-phosphonate unit (Xd) at the fourth
position of tetramer instead of the natural unit provided both
phosphomonoesterase and exonuclease stable ribo tetramer
1. Williams, B. R. G.; Kerr, I. M. Nature 1978, 276, 88.
2. Player, M. R.; Torrence, P. F. Pharmacol. Ther. 1998, 78, 55.
3. Torrence, P. F.; Imai, J.; Lesiak, K.; Jamoulle, J. C.; Sawai, H. J. Med. Chem. 1984,
27, 726.
4. Adah, S. A.; Bayly, S. F.; Cramer, H.; Silverman, R. H.; Torrence, P. F. Curr. Med.
Chem. 2001, 8, 1189.
5. Castelli, J. C.; Hassel, B. A.; Maran, A.; Paranjape, J.; Hewitt, J. A.; Li, X.; Hsu, Y.;
Silverman, R. H.; Youle, R. J. Cell Death Differ. 1998, 5, 313.
6. Sobol, R. W.; Henderson, E. E.; Kon, N.; Shao, J.; Hitzges, P.; Mordechai, E.;
Reichenbach, N. L.; Charubala, R.; Schirmeister, H.; Pfleiderer, W.; Suhadolnik,
}
R. J. J. Biol. Chem. 1995, 270, 5963; Muller, W. E. G.; Weiler, B. E.; Charubala, R.;
Pfleiderer, W.; Leserman, L.; Sobol, R. W.; Suhadolnik, R. J.; Schroder, H. C.
Biochemistry 1991, 30, 2027; Torrence, P. F.; Maitra, R. K.; Lesiak, K.; Khamnei,
S.; Zhou, A.; Silverman, R. H. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1300; Player,
M. R.; Maitra, R. K.; Silverman, R. H.; Torrence, P. F. Antivir. Chem. Chemother.
1998, 9, 213.
}
7. Wyde, P. R. Antivir. Res. 1998, 39, 63; Barnard, D. L.; Sidwell, R. W.; Xiao, W.;
Player, M. R.; Adah, S. A.; Torrence, P. F. Antivir. Res. 1999, 41, 119; Verheijen, J.
C.; Chen, L.; Bayly, S. F.; Torrence, P. F.; van der Marel, G. A.; van Boom, J. H.
Nucleosides Nucleotides Nucleic Acids 2000, 19, 1821; Leaman, D. W.; Longano, F.
J.; Okicki, J. R.; Soike, K. F.; Torrence, P. F.; Silverman, R. H.; Cramer, H. Virology
2002, 292, 70; Xu, Z.; Kuang, M.; Okicki, J. R.; Cramer, H.; Chaudhary, N. Antivir.
Res. 2004, 61, 195.
8. Chebath, J.; Benech, P.; Revel, M.; Vigneron, M. Nature 1987, 330, 587.
9. Zhou, A.; Paranjape, J.; Brown, T. L.; Nie, H.; Nai, Z. S.; Dong, B.; Chang, A.; Trapp,
B.; Fairchild, R.; Colmenares, C.; Silverman, R. H. EMBO J. 1997, 16, 6355; Maitra,
R. K.; Silverman, R. H. J. Virol. 1998, 72, 1146.
10. Williams, B. R.; Golgher, R. R.; Brown, R. E.; Gilbert, C. S.; Kerr, I. M. Nature 1979,
282, 582; Liang, S.; Quirk, D.; Zhou, A. IUBMB Life 2006, 58, 508.
11. Silverman, R. H. Cytokine Growth Factor Rev. 2007, 18, 381.
12. Suhadolnik, R. J.; Reichenbach, N. L.; Hitzges, P.; Sobol, R. W.; Peterson, D. L.;
Henry, B. Clin. Infect. Dis. 1994, 18, S96–104; Lombardi, V. C.; Ruscetti, F. W.;
Das Gupta, J.; Pfost, M. A.; Hagen, K. S.; Peterson, D. L. Science 2009, 326, 585;
Van Kuppeveld, F. J. M.; de Jong, A. S.; Lanke, K. H.; Verhaegh, G. W.; Melchers,
W. J. G.; Swanink, C. M. A.; Bleijenberg, G.; Netea, M. G.; Galama, J. M. D.; van
pcXAApcX 20 but with the EC50 value of 2 lM.
Except for tetramers 17d, 17e, and 17f which were potent acti-
vators of RNase L, there was only a moderate activation ability of
arabino- and xylo-configured phosphonates (7c, 9b, 14e, 14f, 16f).
The tetramers modified by ribo 50-phosphonate unit Xd (14d,
15d, 16d, 17d) represent an example of considerable differences
encountered in the activation efficiency depending on the position
of the modification (Fig. 3, Table 2). Tetramer 17d modified at the
fourth position exhibited the activity comparable to that of natural
activator. Modification at the third position (16d) led to a moderate
loss in the activation ability, whereas modification of the second
unit (15d) resulted in a complete loss of the activation ability.
Incorporation of 50-phosphonate unit at the first position (14d)
afforded a very potent activator of the enzyme.
ˇ
´
13. Endová, M.; Masojídková, M.; Budešínsky, M.; Rosenberg, I. Tetrahedron 1998,
The antagonist activity of modified tetramers was examined by
the cleavage reaction in the presence of natural activator and
ˇ
´
54, 11151; Endová, M.; Masojídková, M.; Budešínsky, M.; Rosenberg, I.
Tetrahedron 1998, 54, 11187; Rosenberg, I. In Frontiers in Nucleosides and